scholarly journals Amine Responsive Poly(lactic acid) (PLA) and Succinic Anhydride (SAh) Graft-Polymer: Synthesis and Characterization

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1466 ◽  
Author(s):  
Adrián Lopera-Valle ◽  
Anastasia Elias

Amines are known to react with succinic anhydride (SAh), which in reactions near room temperature, undergoes a ring opening amidation reaction to form succinamic acid (succinic acid-amine). In this work, we propose to form an amine-responsive polymer by grafting SAh to a poly(lactic acid) (PLA) backbone, such that the PLA can provide chemical and mechanical stability for the functional SAh during the amidation reaction. Grafting is performed in a toluene solution at mass content from 10 wt% to 75 wt% maleic anhydride (MAh) (with respect to PLA and initiator), and films are then cast. The molecular weight and thermal properties of the various grafted polymers are measured by gel permeation chromatography and differential scanning calorimetry, and the chemical modification of these materials is examined using infrared spectroscopy. The efficiency of the grafting reaction is estimated with thermogravimetric analysis. The degree of grafting is determined to range from 5% to 42%; this high degree of grafting is desirable to engineer an amine-responsive material. The response of the graft-polymers to amines is characterized using X-ray photoelectron spectroscopy, infrared spectroscopy, and differential scanning calorimetry. Changes in the chemical and thermal properties of the graft-polymers are observed after exposure to the vapors from a 400 ppm methylamine solution. In contrast to these changes, control samples of neat PLA do not undergo comparable changes in properties upon exposure to methylamine vapor. In addition, the PLA-g-SAh do not undergo changes in structure when exposed to vapors from deionized water without amines. This work presents potential opportunities for the development of real-time amine sensors.

2017 ◽  
Vol 728 ◽  
pp. 193-198
Author(s):  
Rutchaneekorn Wongpajan ◽  
Supaphorn Thumsorn ◽  
Hiroyuki Inoya ◽  
Masayuki Okoshi ◽  
Hiroyuki Hamada

The poly (lactic acid) (PLA) fiber of biodegradable polymer was fabricated by cotton candy method with small nozzle. The air pressure was varied from 0.2-0.5 MPa with nozzle temperature of 210-260°C. The morphology of fiber was determined by scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). SEM results suggested that diameters the PLA fiber at temperature 250°C and air pressure of 0.2 MPa were smaller than the fiber at low and high temperature. The sizes of the fibers were lower than 1 μm and the fibers were irregular size. Crystallinity significantly decreased when increasing barrel temperatures while it slightly changed when varied air pressure. The productivity of PLA fibers was around 30-180 g/h depended on controlled the nozzle temperature and the air pressure.


2018 ◽  
Vol 26 (8-9) ◽  
pp. 446-453 ◽  
Author(s):  
Chi-Hui Tsou ◽  
Chen Gao ◽  
Manuel De Guzman ◽  
Dung-Yi Wu ◽  
Wei-Song Hung ◽  
...  

Poly(lactic acid) (PLA) was thermally blended with adipate ester (AE) to enhance the toughness of PLA. All specimens which were biodegradable materials were prepared using a plasticorder. Differential scanning calorimetry and Fourier-transform infrared spectroscopy indicated that the PLA structure was looser because of the presence of the AE additive. The elongation at break and biodegradable property increased substantially with increasing amounts of AE. The results reveal that excessive amounts of plasticizer would cause the exudation of AE from the PLA/AE composites, which was ascribed to the plasticizer migration phenomenon.


2014 ◽  
Vol 775-776 ◽  
pp. 233-237 ◽  
Author(s):  
Dayanne Diniz Souza Morais ◽  
Renata Barbosa ◽  
Keila Machado Medeiros ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Recent advances in biodegradable polymers have attracted a great interest not only in traditional areas such as biomedical and pharmaceutical industry, but also in packaging applications, articles and injected membranes. The aim of this work was to produce bio-nanocomposites poly (lactic acid) - PLA with bentonite clay. The bio-nanocomposites were produced by melt intercalation with incorporation of 1 to 3 wt% of organoclay. The degree of dispersion of clays in the polymer, and consequently the structure of bio-nanocomposites produced was evaluated by X-ray diffraction (XRD), and the thermal properties were studied by differential scanning calorimetry (DSC). XRD results indicated the formation of intercalated structures. It was observed the appearance of crystalline melting double peaks in bio-nanocomposites PLA.


2020 ◽  
Vol 16 (2) ◽  
pp. 57-69
Author(s):  
Wen Shyang Chow ◽  
Yuan Ting Lim

The aim of this study is to investigate the influence of carbon nanotubes (CNT) on the antistatic and thermal properties of poly(lactic acid)/polypropylene/carbon nanotubes (PLA/PP/CNT) nanocomposites. PLA/PP (blend ratio = 60:40) containing CNT (loading 1.0 to 2.5 phr) was melt-compounded followed by compression moulding. The antistatic properties of PLA/PP/CNT nanocomposites achieved at 2.5 phr CNT loading. Thermogravimetric analysis (TGA) results indicated that the thermal stability of PLA/PP/ CNT nanocomposite was higher than PLA/PP blend. Differential Scanning Calorimetry (DSC) results demonstrated that CNT reduced the cold crystallisation temperature of PLA, while increased the crystallisation temperature of PP, which evidenced the nucleatingability of CNT in the PLA/PP blends.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3171-3185
Author(s):  
Perry Law Nyuk Khui ◽  
Rezaur Rahman ◽  
Abu Saleh Ahmed ◽  
Kuok King Kuok ◽  
Muhammad Khusairy Bin Bakri ◽  
...  

The morphological and thermal properties of composites containing a bioplastic blend and micro/nano-sized biochar from pyrolyzed jatropha seeds from microwave pyrolyzed jatropha seeds were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The biocomposite samples exhibited a brittle structure with a slightly ductile chip-like appearance. The Fourier transform infrared spectroscopy results for the PLA/PEMA/BC bio-composites were comparable to the PLA/BC biocomposites. A lower bio-filler content had more pronounced peak intensities than the higher bio-filler content biocomposites. The added PEMA compatibilizer in the PLA/PEMA/BC biocomposite showed more pronounced peaks, which indicated slightly improved bonding/interaction between the bio-filler and the matrix. Overall, increasing bio-filler content did not drastically affect the functional groups of the biocomposites. Thermogravimetric and differential scanning calorimetry analysis showed the developed biocomposites had a slight improvement in thermal stability, in comparison to the PLA sample. Improvements in the thermal stability of the PLA/PEMA/BC biocomposite could be attributed to the additional hydroxyl group, which was due to the added PEMA in the PLA and PLA/BC. According to the results of the analysis of the developed biocomposites, the biocomposites were more brittle and had reasonable thermal stability.


2014 ◽  
Vol 34 (9) ◽  
pp. 895-903 ◽  
Author(s):  
Izan R. Mustapa ◽  
Robert A. Shanks ◽  
Ing Kong

Abstract Poly(lactic acid) (PLA)-hemp-nanosilica (PHS) composites were prepared by impregnation of hemp woven fabric with PLA solution. Nanosilica was dispersed in the PLA solution to introduce a matrix reinforcing nanophase within the composite. The melting behavior of PLA composites was obtained by using differential scanning calorimetry (DSC) and modulated-temperature DSC (mT-DSC). Multiple melting which appeared in the non-isothermal heating curve showed that the temperature of a low melting peak increased when using a slower scanning rate. The incorporation of nanosilica in PLA composites affected the melting temperature (Tm) and sufficiently formed nucleation sites that promoted the growth of PLA crystals. Composites analyzed by a temperature-modulated program showed a broad exothermic peak before the melting peak in the non-reversing heat capacity and endothermic melting in the reversing heat capacity curve. This behavior was explained by a process of partial melting, recrystallization and remelting (mrr). The mT-DSC resolved that hemp fiber induced recrystallization and nanosilica acted as an effective nucleating agent, which promoted small and imperfect crystals that changed successively into more stable crystals through a melt-recrystallization process.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2604
Author(s):  
Siti Hasnah Kamarudin ◽  
Luqman Chuah Abdullah ◽  
Min Min Aung ◽  
Chantara Thevy Ratnam

New environmentally friendly plasticized poly(lactic acid) (PLA) kenaf biocomposites were obtained through a melt blending process from a combination of epoxidized jatropha oil, a type of nonedible vegetable oil material, and renewable plasticizer. The main objective of this study is to investigate the effect of the incorporation of epoxidized jatropha oil (EJO) as a plasticizer and alkaline treatment of kenaf fiber on the thermal properties of PLA/Kenaf/EJO biocomposites. Kenaf fiber was treated with 6% sodium hydroxide (NaOH) solution for 4 h. The thermal properties of the biocomposites were analyzed using a differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It must be highlighted that the addition of EJO resulted in a decrease of glass transition temperature which aided PLA chain mobility in the blend as predicted. TGA demonstrated that the presence of treated kenaf fiber together with EJO in the blends reduced the rate of decomposition of PLA and enhanced the thermal stability of the blend. The treatment showed a rougher surface fiber in scanning electron microscopy (SEM) micrographs and had a greater mechanical locking with matrix, and this was further supported with Fourier-transform infrared spectroscopy (FTIR) analysis. Overall, the increasing content of EJO as a plasticizer has improved the thermal properties of PLA/Kenaf/EJO biocomposites.


2011 ◽  
Vol 221 ◽  
pp. 85-89 ◽  
Author(s):  
Wen Jian Deng ◽  
Xu Pin Zhuang ◽  
Ke Tian Guan ◽  
Bo Wen Cheng

To improve the thermal behavior of cellulose diacetate, cellulose diacetate-graft-poly(lactic acid) copolymers (CDA-g-PLAs) were synthesized by ring-opening polymerization of L-lactide using stannous octoate (Sn(Oct)2) as catalyst. The molecular structure of the copolymer was characterized by FT-IR and 1H-NMR and the thermal properties were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG-DTA). The results showed that the product was grafted copolymer of cellulose diacetate-graft-poly(lactic acid) with different side-chain structure. The thermal processing properties of CDA-g-PLAs are remarkably improved with melting temperature(Tm) about 140°C which lower than that of CDA and decomposition temperature (Td) higher than 260°C.


Sign in / Sign up

Export Citation Format

Share Document