scholarly journals Impact-Induced Reaction Characteristic and the Enhanced Sensitivity of PTFE/Al/Bi2O3 Composites

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2049 ◽  
Author(s):  
Ying Yuan ◽  
Baoqun Geng ◽  
Tao Sun ◽  
Qingbo Yu ◽  
Haifu Wang

In this paper, the reaction characteristic of a novel reactive material, which introduced bismuth trioxide (Bi2O3) into traditional polytetrafluoroethylene/aluminum (PTFE/Al), is studied. The effect of Bi2O3 with different content and particle size on the reaction behaviors of PTFE/Al/Bi2O3 are investigated by drop-weight test and X-ray diffractometer (XRD), including impact sensitivity, energy release performance under a certain impact, and reaction mechanism. The experimental results show that the content of Bi2O3 increased from 0% to 35.616%, the characteristic drop height of impact sensitivity (H50) of PTFE/Al/Bi2O3 reactive materials decreased first and then increased, and the minimum H50 of all types of materials in the experiment is 0.74 times that of PTFE/Al, and the particle size of Bi2O3 affects the rate of H50 change with Bi2O3 content. Besides, with the increase of Bi2O3 content, both the reaction intensity and duration first increase and then decrease, and there is optimum content of Bi2O3 maximizing the reaction degree of the PTFE/Al/Bi2O3. Furthermore, a prediction model for the impact sensitivity of PTFE-based reactive material is developed. The main reaction products include AlF3, xBi2O3·Al2O3, and Bi.

2020 ◽  
Vol 12 (7) ◽  
pp. 2984 ◽  
Author(s):  
Alessio Siciliano ◽  
Giulia Maria Curcio ◽  
Carlo Limonti

The removal of nitrate from aqueous environments through zero-valent metallic elements is an attractive technique that has gained increasing interest in recent years. In comparison to other metallic elements, zero-valent magnesium (ZVM) has numerous beneficial aspects. Nevertheless, the use of Mg0 particles for nitrate reduction in column systems has not been investigated yet. To overcome the lack of research, in the present study, a wide experimental activity was carried out to develop a chemical denitrification process through ZVM in batch column equipment. Several tests were executed to evaluate the effects of recirculation hydraulic velocity, pH, Mg0 amount, N-NO3− initial concentration and temperature on the process performance. The results show that the process efficiency is positively influenced by the recirculation velocity increase. In particular, the optimal condition was detected with a value of 1 m/min. The process pH was identified as the main operating parameter. At pH 3, abatements higher than 86.6% were reached for every initial nitrate concentration tested. In these conditions, nitrogen gas was detected as the main reaction product. The pH increase up to values of 5 and 7 caused a drastic denitrification decline with observed efficiencies below 26%. At pH 3, the ratio (RMN) between Mg0 and initial nitrate amount also plays a key role in the treatment performance. A characteristic value of about RMN = 0.333 gMg0/mgN-NO3− was found with which it is possible to reach the maximum reaction rate. Unexpectedly, the process was negatively affected by the increase in temperature from 20 to 40 °C. At 20 °C, the material showed satisfactory denitrification efficiencies in subsequent reuse cycles. With the optimal RMN ratio, removals up to 90% were detected by reusing the reactive material three times. By means of a kinetic analysis, a mathematical law able to describe the nitrate abatement curves was defined. Moreover, the relation between the observed kinetic constant and the operating parameters was recognized. Finally, the reaction pathways were proposed and the corrosion reaction products formed during the treatment were identified.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Conghua Hou ◽  
Xinlei Jia ◽  
Jingyu Wang ◽  
Yingxin Tan ◽  
Yuanping Zhang ◽  
...  

A new one-step granulation process for preparing high melting explosive- (HMX-) based PBX was developed. HMX/F2602 microspheres were successfully prepared by using HMX and F2602 as the main explosive and binder, respectively. The particle morphology, particle size, crystal structure, thermal stability, and impact sensitivity of the as-prepared HMX/F2602 microspheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser particle size analyzer, differential scanning calorimetry (DSC), and impact sensitivity test, respectively. The SEM analysis indicated successful coating of F2602 on the surface of HMX, and the resulting particles are ellipsoidal or spherical with a median particle size of 940 nm; the XRD analysis did not show any change in the crystal structure after the coating and still has β-HNX crystal structure; according to the DSC analysis, HMX/F2602 prepared by the new method has better thermal stability compared to that prepared by the water suspension process. The impact sensitivity of HMX/F2602 prepared by this one-step granulation process decreased, and its characteristic height H50 increased from 37.62 to 40.13 cm, thus significantly improving the safety performance. More importantly, this method does not need the freeze-drying process after recrystallization, thus increasing the efficiency by 2 to 3 times.


Author(s):  
Antonio De Lucas-Consuegra ◽  
Juan Carlos Serrano-Ruiz ◽  
Nuria Gutierrez-Guerra ◽  
José Luis Valverde

A novel gas-phase electrocatalytic system based on a low-temperature proton exchange membrane (Sterion) was developed for the gas phase electrocatalytic conversion of CO2 to liquid fuels. This system achieved gas-phase electrocatalytic reduction of CO2 at low temperatures (below 90 ºC) over a Cu cathode by using water electrolysis-derived protons generated in-situ on an IrO2 anode. Three Cu-based cathodes with varying metal particle sizes were prepared by supporting this metal on an activated carbon at three loadings (50, 20, and 10 wt%; 50%Cu-AC, 20%Cu-AC, and 10%Cu-AC, respectively). The cathodes were characterized by N2 adsorption–desorption, temperature-programmed reduction (TPR), and X-ray diffraction (XRD) whereas their performance towards the electrocatalytic conversion of CO2 was subsequently studied. The membrane electrode assembly (MEA) containing the cathode with the largest Cu particle size (50%Cu-AC, 40 nm) showed the highest CO2 electrocatalytic activity per mole of Cu, with methyl formate being the main product. This higher electrocatalytic activity was attributed to the lower Cu–CO bonding strength over large Cu particles. Different product distributions were obtained over 20%Cu-AC and 10%Cu-AC, with acetaldehyde and methanol being the main reaction products, respectively. The CO2 consumption rate increased with the applied current and the reaction temperature.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 340 ◽  
Author(s):  
Antonio de Lucas-Consuegra ◽  
Juan Serrano-Ruiz ◽  
Nuria Gutiérrez-Guerra ◽  
José Valverde

A novel gas-phase electrocatalytic system based on a low-temperature proton exchange membrane (Sterion) was developed for the gas-phase electrocatalytic conversion of CO2 to liquid fuels. This system achieved gas-phase electrocatalytic reduction of CO2 at low temperatures (below 90 °C) over a Cu cathode by using water electrolysis-derived protons generated in-situ on an IrO2 anode. Three Cu-based cathodes with varying metal particle sizes were prepared by supporting this metal on an activated carbon at three loadings (50, 20, and 10 wt %; 50% Cu-AC, 20% Cu-AC, and 10% Cu-AC, respectively). The cathodes were characterized by N2 adsorption–desorption, temperature-programmed reduction (TPR), and X-ray diffraction (XRD) and their performance towards the electrocatalytic conversion of CO2 was subsequently studied. The membrane electrode assembly (MEA) containing the cathode with the largest Cu particle size (50% Cu-AC, 40 nm) showed the highest CO2 electrocatalytic activity per mole of Cu, with methyl formate being the main product. This higher electrocatalytic activity was attributed to the lower Cu–CO bonding strength over large Cu particles. Different product distributions were obtained over 20% Cu-AC and 10% Cu-AC, with acetaldehyde and methanol being the main reaction products, respectively. The CO2 consumption rate increased with the applied current and reaction temperature.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1911
Author(s):  
Liang Mao ◽  
Chenyang Wei ◽  
Rong Hu ◽  
Wanxiang Hu ◽  
Puguang Luo ◽  
...  

Polytetrafluoroethylene (PTFE)/Al reactive material with different aluminum particle sizes were prepared by molding and sintering, and the effect of aluminum particle size on the impact behavior of PTFE/Al reactive material with a mass ratio of 50:50 was investigated. The results show that aluminum particle size has significant effects on the shock-reduced reaction diffusion, reaction speed, and degree of reaction of the PTFE/Al reactive material. At a moderate strain rate, the reaction delay of PTFE/Al increased, and the reaction duration and degree decreased, with the increase of aluminum particle size. Under the strong impact of explosive loading, aluminum particle size has little effect on the reaction delay, which maintains at about 1.5 μs–2.5 μs, but the reaction durability and degree of reaction of PTFE/Al decrease with increasing aluminum particle size. There is also a strain rate threshold for the shock-induced reaction of PTFE/Al reactive material, which is closely related to aluminum particle size. The shock-induced reaction occurs when the strain rate threshold is exceeded.


Author(s):  
Wojciech Sobieski

AbstractThe paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.


2021 ◽  
Vol 11 (15) ◽  
pp. 6874
Author(s):  
Miroslava Vandličkova ◽  
Iveta Markova ◽  
Katarina Holla ◽  
Stanislava Gašpercová

The paper deals with the selected characteristics, such as moisture, average bulk density, and fraction size, of tropical marblewood dust (Marmaroxylon racemosum) that influence its ignition risk. Research was focused on sieve analysis, granulometric analysis, measurement of moisture level in the dust, and determination of the minimum ignition temperatures of airborne tropical dust and dust layers. Samples were prepared using a Makita 9556CR 1400W grinder and K36 sandpaper for the purpose of selecting the percentages of the various fractions (<63, 63, 71, 100, 200, 315, 500 μm). The samples were sized on an automatic vibratory sieve machine Retsch AS 200. More than 65% of the particles were determined to be under 100 μm. The focus was on microfractions of tropical wood dust (particles with a diameter of ≤100 µm) and on the impact assessment of particle size (particle size <100 µm) on the minimum ignition temperatures of airborne tropical dust and dust layers. The minimum ignition temperature of airborne marblewood dust decreased with the particle size to the level of 400 °C (particle size 63 μm).


2007 ◽  
Vol 539-543 ◽  
pp. 1863-1867 ◽  
Author(s):  
X.F. Tao ◽  
Li Ping Zhang ◽  
Y.Y. Zhao

This paper investigated the mechanical response of porous copper manufactured by LCS under three-point bending and Charpy impact conditions. The effects of the compaction pressure and K2CO3 particle size used in producing the porous copper samples and the relative density of the samples were studied. The apparent modulus, flexural strength and energy absorption capacity in three-point bending tests increased exponentially with increasing relative density. The impact strength was not markedly sensitive to relative density and had values within 7 – 9 kJ/m2 for the relative densities in the range 0.17 – 0.31. The amount of energy absorbed by a porous copper sample in the impact test was much higher than that absorbed in the three-point bending test, impling that loading strain rate had a significant effect on the deformation mechanisms. Increasing compaction pressure and increasing K2CO3 particle size resulted in significant increases in the flexural strength and the bending energy absorption capacity, both owing to the reduced sintering defects.


Author(s):  
Yun Bai ◽  
Grady Wagner ◽  
Christopher B. Williams

The binder jetting additive manufacturing (AM) process provides an economical and scalable means of fabricating complex parts from a wide variety of materials. While it is often used to fabricate metal parts, it is typically challenging to fabricate full density parts without large degree of sintering shrinkage. This can be attributed to the inherently low green density and the constraint on powder particle size imposed by challenges in recoating fine powders. To address this issue, the authors explored the use of bimodal powder mixtures in the context of binder jetting of copper. A variety of bimodal powder mixtures of various particle diameters and mixing ratios were printed and sintered to study the impact of bimodal mixtures on the parts' density and shrinkage. It was discovered that, compared to parts printed with monosized fine powders, the use of bimodal powder mixtures improves the powder's packing density (8.2%) and flowability (10.5%), and increases the sintered density (4.0%) while also reducing the sintering shrinkage (6.4%).


Sign in / Sign up

Export Citation Format

Share Document