scholarly journals An Eco-Effective Soybean Meal-Based Adhesive Enhanced with Diglycidyl Resorcinol Ether

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 954 ◽  
Author(s):  
Jing Luo ◽  
Ying Zhou ◽  
Yi Zhang ◽  
Qiang Gao ◽  
Jianzhang Li

Soybean meal-based adhesive is a good wood adhesive mainly due to its renewable, degradable, and environmentally friendly features. To improve the enhancement efficiency for adhesives, diglycidyl resorcinol ether (DRE) containing a benzene ring and flexible chain structure was used as an efficient cross-linker to enhance the adhesive in the study. The physicochemical properties of adhesives, the dry shear strength, and wet shear strength of plywood were measured. Results suggested that DRE reacted with the functional groups of soybean meal adhesive and formed a cross-linking network during hot press process in a ring-opening reaction through a covalent bond. As expected, compared to adhesive control, the soybean meal adhesive with 4 wt% DRE incorporation showed a significant increment in wet shear strength by 227.8% and in dry shear strength by 82.7%. In short, soybean meal adhesive enhanced with DRE showed considerable potential as a wood adhesive for industrial applications.

Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract ALUMINUM 1100 is commercially pure aluminum and is characterized by its excellent ability to be drawn, spun, stamped or forged. It has good weldability, excellent resistance to corrosion and many home, architectural and industrial applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-44. Producer or source: Various aluminum companies. Originally published October 1956, revised February 1974.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 806
Author(s):  
Philipp Marx ◽  
Frank Wiesbrock

Commonly, volumetric shrinkage occurs during polymerizations due to the shortening of the equilibrium Van der Waals distance of two molecules to the length of a (significantly shorter) covalent bond. This volumetric shrinkage can have severe influence on the materials’ properties. One strategy to overcome this volumetric shrinkage is the use of expanding monomers that show volumetric expansion during polymerization reactions. Such monomers exhibit cyclic or even oligocyclic structural motifs with a correspondingly dense atomic packing. During the ring-opening reaction of such monomers, linear structures with atomic packing of lower density are formed, which results in volumetric expansion or at least reduced volumetric shrinkage. This review provides a concise overview of expanding monomers with a focus on the elucidation of structure-property relationships. Preceded by a brief introduction of measuring techniques for the quantification of volumetric changes, the most prominent classes of expanding monomers will be presented and discussed, namely cycloalkanes and cycloalkenes, oxacycles, benzoxazines, as well as thiocyclic compounds. Spiroorthoesters, spiroorthocarbonates, cyclic carbonates, and benzoxazines are particularly highlighted.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hiroyuki Ikemoto ◽  
Takafumi Miyanaga

AbstractIn this review, we make a survey of the structure studies for the chalcogen elements and several chalcogenides in liquid, amorphous and nanosized state by using X-ray absorption fine structure (XAFS). The chalcogen elements have hierarchic structures; the chain structure constructed with the strong covalent bond as a primary structure, and the weaker interaction between chains as a secondary one. Existence of these two kinds of interactions induces exotic behaviors in the liquid, amorphous and nanosized state of the chalcogen and chalcogenides. XAFS is a powerful structure analysis technique for multi-element systems and the disordered materials, so it is suitable for the study of such as liquid, amorphous and nanosized mixtures. In section 2, the structures for the liquid state are discussed, which show the interesting semiconductor-metal transition depending on their temperatures and components. In section 3, the structure for the amorphous states are discussed. Especially, some of chalcogens and chalcogenides present the photostructural change, which is important industrial application. In section 4, the structures of nanosized state, nanoparticles and isolated chain confined into the narrow channel, are discussed. The studies of the nanoparticle and the isolated chain reveal the alternative role between the intrachain covalent bonds and the interchain interaction.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1217
Author(s):  
Shun Li ◽  
Caimin Huang ◽  
Jin Chen ◽  
Yu Tang ◽  
Shuxin Bai

Energetic structural materials (ESMs) are an important class of military materials due to their good structural and energy-releasing characteristics. To improve the damage effect of metal–metal ESMs with good mechanical properties, W was added to the 48Al–52Ni composites, and the effect of W on the impact-induced energy release behaviors was investigated. The results showed that the hot-press process and the addition of W did not change the microstructure and surface state of the constituent particles, leading to a stable onset temperature of the Al–Ni intermetallic reaction in (48Al–52Ni)100-xWx composites. Meanwhile, the decrease in the contact area between Al and Ni in the composites with increased W content resulted in the decrease in reaction heat. During the impact process, the intermetallic reaction of W caused by the Al–Ni intermetallic reaction, as well as the oxidation reaction of Al and Ni caused by the brittle fracture along the weak interface, caused the released energy of (48Al–52Ni)40W60 to reach 2.04 kJ/g.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3718-3733
Author(s):  
Osman Camlibel

Physical, mechanical, and formaldehyde emission properties were studied for medium density fiberboard (MDF) produced with oak (75%) and pine (25%) fibers that had been mechanically refined in the presence of calcite particles. The calcite slurry was prepared at two levels of solids, 1.5% and 3% (10 and 20 kg·m-³). Chips were cooked for 4 min at 185 °C, under 8 bar vapor pressure in an Andritz defibrillator. 1.8% liquid paraffin, 0.72% ammonium sulphate solution, and 11% urea-formaldehyde were added by percentage based on oven-dried wood fibers in the blowline at the exit of the defibrator. The fibers were dried to 11% moisture content. MDF boards (2100 mm × 2800 mm × 18 mm) were created using a continuous hot-press process. The addition of calcite in the course of MDF production resulted in improved physical properties, such as thickness swelling (ThS 24 hours) and water absorption (WA 24 hours). MDF boards prepared with calcite exhibited higher internal bond (IB), modulus of rupture (MOR), and modulus of elasticity (MOE). Resistance to axial withdrawal of screw also was increased by addition of 3% calcite. In addition, the lowest levels of formaldehyde emission were observed for MDF prepared with calcite at the 3% level.


2006 ◽  
Vol 969 ◽  
Author(s):  
Wen-Yang Chang ◽  
Jin-Sheng Chang ◽  
Chun-Hsun Chu ◽  
Tzong-Che Ho ◽  
Yu-Cheng Lin

AbstractThe study reported is about an integrated wireless physiological monitor module of the flexible patch type, used on a non-woven material to package this module by a hot press process. The module can monitor the body temperature and heart rate. Experimental results showed that the specification and accuracy should be 25-40 °C ± 0.5 °C and 50-200 bpm ± 2 bpm. The main advantage of the module is that the postural change can be monitored. At the same time, it has also a good adhesion between substrate and components, without crack of conductor trace line after bending the module repeatedly. Thickness is about 2 mm. The aim of this study is to speed up the physiological technology and to create more efficiency by miniaturization. In addition, the acceptance level of wearing it is increased by the small and ergonomic design.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Wei Zhou ◽  
Caiying Bo ◽  
Puyou Jia ◽  
Yonghong Zhou ◽  
Meng Zhang

A phosphorus-containing tung oil-based polyol (PTOP) and a silicon-containing tung oil-based polyol (PTOSi) were each efficiently prepared by attaching 9,10-dihydro-9-oxa-10-phosphaphenanthrene (DOPO) and dihydroxydiphenylsilane (DPSD) directly, respectively, to the epoxidized monoglyceride of tung oil (EGTO) through a ring-opening reaction. The two new polyols were used in the formation of rigid polyurethane foam (RPUF), which displayed great thermal stability and excellent flame retardancy performance. The limiting oxygen index (LOI) value of RPUF containing 80 wt % PTOP and 80 wt % PTOSi was 24.0% and 23.4%, respectively. Fourier transfer infrared (FTIR), Nuclear Magnetic Resonance (NMR) and thermogravimetric (TG) analysis revealed that DOPO and DPSD are linked to EGTO by a covalent bond. Interestingly, PTOP and PTOSi had opposite effects on Tg and the compressive strength of RPUF, where, with the appropriate loading, the compressive strengths were 0.82 MPa and 0.25 MPa, respectively. At a higher loading of PTOP and PTOSi, the thermal conductivity of RPUF increased while the RPUF density decreased. The scanning electron microscope (SEM) micrographs showed that the size and closed areas of the RPUF cells were regular. SEM micrographs of the char after combustion showed that the char layer was compact and dense. The enhanced flame retardancy of RPUF resulted from the barrier effect of the char layer, which was covered with incombustible substance.


2006 ◽  
Vol 100 (3) ◽  
pp. 1759-1764 ◽  
Author(s):  
Khairiah Haji Badri ◽  
Ahmad Helmi Ujar ◽  
Zulkefly Othman ◽  
Fadhlina Hani Sahaldin

Sign in / Sign up

Export Citation Format

Share Document