scholarly journals Preparation and Characterization of Furan–Matrix Composites Blended with Modified Hollow Glass Microsphere

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1480
Author(s):  
Yizhe Ma ◽  
Ying Du ◽  
Jin Zhao ◽  
Xubo Yuan ◽  
Xin Hou

In this study, a new class of thermal insulation composites was prepared by blending a modified hollow glass microsphere (HGM) with furan resin. The particle dispersion between the microparticles and resin matrix was improved using 3-methacryloxypropyltrimethoxy silane (KH-570). Furthermore, the structure and morphology of the modified HGM were characterised by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). In addition, the effects of the modified HGM on the thermal insulation, flame retardancy, and thermal properties of the composites were investigated. The thermal conductivity of the composites was lower than that of the native furan resin. The minimum thermal conductivity of the composites was 0.0274 W/m·K; the flame retardancy of the composites improved, and the limiting oxygen index become a maximum of 31.6%, reaching the refractory material level. Furthermore, the thermal analysis of the composites demonstrated enhanced thermal stability. This study demonstrates that the composite material exhibited good thermal insulation performance and flame retardancy and that it can be applied in the field of thermal insulation.

2013 ◽  
Vol 539 ◽  
pp. 64-69 ◽  
Author(s):  
Qing Wang ◽  
Lin Ge Qiu ◽  
Qi Yao ◽  
Zhao Yang Ding ◽  
Xi Fan Yan

Dry density and compression strength of foam concrete are conflicting, there is a negative relationship between them. Hollow glass microsphere is a new lightweight material which is lightweight, high strength, low thermal conductivity and good thermal stability. In order to prepare lightweight and high-strength foam concrete, this paper researched the effects of different dosage on dry density and compressive strength of foam concrete through adding hollow glass microspheres. The results show that the thermal conductivity of foam concrete increased as the hollow glass microsphere increases, and the dry densities of foam concrete are between 120-200 kg•m-3, compressive strength reaches 0.1MPa.


2015 ◽  
Vol 820 ◽  
pp. 509-514
Author(s):  
Cindy Yuri Ueki Peres ◽  
Antonio Hortêncio Munhoz ◽  
L.F. Miranda ◽  
A. Cabral Neto ◽  
A.R. Zandonadi ◽  
...  

The addition of hollow glass spheres is interesting to reduce the thermal conductivity of the concrete pieces. This work aims to evaluate the concrete with addition of hollow glass microsphere with different combinations of dosage in concrete concerning strength and workability. Slump tests were performed in each dosage of concrete in order to evaluate the effect of glass microspheres in concrete mix. In each age of curing concrete, bodies-specimens underwent ultrasound to estimate the homogeneity of concrete with hollow glass microspheres, and testing of compressive strength. The analysis of the results shows that for some formulations, the addition of hollow glass microspheres imparts high mechanical strength to compressive strength above 30MPa at all analyzed cure periods. The workability of the concrete had to be substantially reduced, showing no workability improvement due to the addition of hollow glass microsphere.


2017 ◽  
Vol 103 ◽  
pp. 01014 ◽  
Author(s):  
Shahiron Shahidan ◽  
Eeydzah Aminuddin ◽  
Khairiyah Mohd Noor ◽  
Nurul Izzati Raihan Ramzi Hannan ◽  
Nur Amira Saiful Bahari

2017 ◽  
Vol 52 (12) ◽  
pp. 1627-1632 ◽  
Author(s):  
Xin Liu ◽  
Guohui Wang ◽  
Jiahua Pei ◽  
Zhi Wang ◽  
Zhanjun Wu

According to the demand of deep-sea buoyancy material with high compression strength and low density, a novel epoxy-hollow glass microsphere composite was manufactured and characterized. Firstly, the epoxy resin is modified by chemical modification methods using poly(methyltriethoxysilane) to improve the toughness of epoxy resin. Then, the ammonium bicarbonate is used as the foaming agent to add into the epoxy resin to produce the bubbles. After mixing with a small amount of hollow glass microsphere, the modified epoxy-hollow glass microsphere composite with foams is fabricated. IR spectrum indicates that the silicone has been successfully grafted on the epoxy resin chain, which benefits the toughness of the resin. It can be found that a lot of smaller bubbles exist on the surface of hollow glass microsphere by SEM, which further reduces the density of the modified epoxy-hollow glass microsphere composite. The compression strength has been significantly improved since the bubbles on the surface of glass beads play the role of a buffer balloon and there are few air bubbles in the resin matrix. The coefficient of water absorption for the modified epoxy-hollow glass microsphere composite also increased. The flexural strength of the modified epoxy-hollow glass microsphere composite was slightly reduced at the same time. The results here confirm a promising method for buoyancy materials to promote the compression strength and reduce the density.


Sign in / Sign up

Export Citation Format

Share Document