Thermal conductivity and compressive properties of hollow glass microsphere filled epoxy–matrix composites

2015 ◽  
Vol 34 (17) ◽  
pp. 1413-1421 ◽  
Author(s):  
Yingjie Qiao ◽  
Xiaodong Wang ◽  
Xiaohong Zhang ◽  
Zhipeng Xing
Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Kumar D ◽  
Kiran Shahapurkar ◽  
C. Venkatesh ◽  
Muruganandhan R ◽  
Vineet Tirth ◽  
...  

The present work aimed to analyze the roll of carbon nano tubes and graphene nano fillers on the mechanical and thermal characteristics of hollow glass microsphere reinforced epoxy composites. Composites with varying content of hollow glass microballoons (2, 4, 6, 8, and 10 wt %) reinforced in epoxy matrix were fabricated. Additionally, two more types of composites, one with graphene nano fillers and the other with carbon nano tube at a constant 0.5 wt %, were fabricated with varying weight percentages of hollow glass microballoons (2, 4, 6, 8, and 10%). The composites were fabricated using an open mold casting process. Composites were tested for thermal and mechanical properties. The tensile and flexural moduli were found to rise as the HGM concentration increased. Graphene-filled HGM/epoxy composites revealed the highest modulus compared with HGM/epoxy and HGM/CNT/epoxy composites. The impact strength of all composite types decreased as the HGM content increased. Neat epoxy specimens revealed low response as compared with all the composites tested. Further, the thermal conductivity of HGM/epoxy composites was lower as compared with other compositions and neat epoxy. Scanning electron microscopy was used to analyze the surface morphological behavior of the composites subjected to flexural test. It was found that HGM/G/E composites with 10% of HGM and 0.5% of graphene by weight in epoxy matrix were the optimum.


2013 ◽  
Vol 539 ◽  
pp. 64-69 ◽  
Author(s):  
Qing Wang ◽  
Lin Ge Qiu ◽  
Qi Yao ◽  
Zhao Yang Ding ◽  
Xi Fan Yan

Dry density and compression strength of foam concrete are conflicting, there is a negative relationship between them. Hollow glass microsphere is a new lightweight material which is lightweight, high strength, low thermal conductivity and good thermal stability. In order to prepare lightweight and high-strength foam concrete, this paper researched the effects of different dosage on dry density and compressive strength of foam concrete through adding hollow glass microspheres. The results show that the thermal conductivity of foam concrete increased as the hollow glass microsphere increases, and the dry densities of foam concrete are between 120-200 kg•m-3, compressive strength reaches 0.1MPa.


2015 ◽  
Vol 820 ◽  
pp. 509-514
Author(s):  
Cindy Yuri Ueki Peres ◽  
Antonio Hortêncio Munhoz ◽  
L.F. Miranda ◽  
A. Cabral Neto ◽  
A.R. Zandonadi ◽  
...  

The addition of hollow glass spheres is interesting to reduce the thermal conductivity of the concrete pieces. This work aims to evaluate the concrete with addition of hollow glass microsphere with different combinations of dosage in concrete concerning strength and workability. Slump tests were performed in each dosage of concrete in order to evaluate the effect of glass microspheres in concrete mix. In each age of curing concrete, bodies-specimens underwent ultrasound to estimate the homogeneity of concrete with hollow glass microspheres, and testing of compressive strength. The analysis of the results shows that for some formulations, the addition of hollow glass microspheres imparts high mechanical strength to compressive strength above 30MPa at all analyzed cure periods. The workability of the concrete had to be substantially reduced, showing no workability improvement due to the addition of hollow glass microsphere.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1480
Author(s):  
Yizhe Ma ◽  
Ying Du ◽  
Jin Zhao ◽  
Xubo Yuan ◽  
Xin Hou

In this study, a new class of thermal insulation composites was prepared by blending a modified hollow glass microsphere (HGM) with furan resin. The particle dispersion between the microparticles and resin matrix was improved using 3-methacryloxypropyltrimethoxy silane (KH-570). Furthermore, the structure and morphology of the modified HGM were characterised by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). In addition, the effects of the modified HGM on the thermal insulation, flame retardancy, and thermal properties of the composites were investigated. The thermal conductivity of the composites was lower than that of the native furan resin. The minimum thermal conductivity of the composites was 0.0274 W/m·K; the flame retardancy of the composites improved, and the limiting oxygen index become a maximum of 31.6%, reaching the refractory material level. Furthermore, the thermal analysis of the composites demonstrated enhanced thermal stability. This study demonstrates that the composite material exhibited good thermal insulation performance and flame retardancy and that it can be applied in the field of thermal insulation.


Sign in / Sign up

Export Citation Format

Share Document