scholarly journals Evaluation of the Rheologic and Physicochemical Properties of a Novel Hyaluronic Acid Filler Range with eXcellent Three-Dimensional Reticulation (XTR™) Technology

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1644
Author(s):  
Giovanni Salti ◽  
Salvatore Piero Fundarò

Soft-tissue fillers made of hyaluronic acid and combined with lidocaine have recently become a popular tool in aesthetic medicine. Several manufacturers have developed their own proprietary formulae with varying manufacturing tools, concentrations, crosslinked three-dimensional network structures, pore size distributions of the fibrous networks, as well as cohesivity levels and rheological properties, lending fillers and filler ranges their unique properties and degradability profiles. One such range of hyaluronic acid fillers manufactured using the novel eXcellent three-dimensional reticulation (XTR™) technology was evaluated in comparison with other HA fillers and filler ranges by an independent research laboratory. Fillers manufactured with the XTR™ technology were shown to have characteristic rheological, crosslinking and biophysical factors that support the suitability of this filler range for certain patient profiles.

2006 ◽  
Vol 17 (12) ◽  
pp. 1763-1776 ◽  
Author(s):  
JÚLIO CÉSAR C B R MOREIRA ◽  
KRISHNASWAMY RAJAGOPAL

We present the results from simulation studies of evaporation of a single fluid in a capillary porous medium. Employing a three-dimensional site-bond correlated network model to represent a porous medium, namely Clashac sandstone, we analyze different aspects of the phase distribution by evaporation of a single fluid in the porous medium. As a direct consequence of the porous medium utilized, we analyze the influence of a strongly disordered porous media with a broad range of pore and throat size distributions in the evaporation process. Experimental data togheter with throat and pore size distributions were used to build and match the network model, allowing us to determine the porosimetric curve for the Clashac sandstone for different degrees of correlation. Also, the correlation length was obtained from the percolation theory. In our case study the evaporation process modeled was insensitive to the different degrees of correlation that might occur between pores and throats. In addition, it was observed that the evaporation pattern was the same for all analyzed networks above the correlation length.


1987 ◽  
Vol 4 (1-2) ◽  
pp. 87-104 ◽  
Author(s):  
Bruce D Adkins ◽  
Jill B. Heink ◽  
Burtron H. Davis

Scanning electron microscopic data, X-ray diffraction patterns and porosity measurements are consistent with a structure for an Mo-A12O3 catalyst series containing a single surface layer of Mo up to the point where the Mo loadings exceed the amount required for a monolayer. For greater Mo loadings than required for a monolayer, three dimensional orthorhombic MoO3 is also present. The cumulative pore volume, on an alumina basis, does not appear to be significantly altered by MoO3 loadings up to about 15 wt.%. The BET surface area, on an alumina basis, remains constant with Mo loading. However, the apparent surface area calculated from mercury penetration data decreases with Mo loading. For these materials with cylindrical pores, the Broekhoff-deBoer model for the calculation of pore size distributions produced closer agreement to the mercury penetration pore size distribution. This is in contrast to materials composed of nonporous spheres where the Broekhoff-deBoer model provided poorer agreement to mercury penetration results than either the Cohan or a packed sphere model. The results show that, within a factor of two the pore size distributions calculated from nitrogen adsorption and mercury penetration data are comparable.


Author(s):  
Yue-Feng Zhang ◽  
Jian-Ping Ma ◽  
Qi-Kui Liu ◽  
Yu-Bin Dong

The novel asymmetric bridging ligand 1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole (L) has been used to construct the coordination polymerscatena-poly[[[dibromidocadmium(II)]-μ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole] monohydrate], {[CdBr2(C24H18N4)]·H2O}n, (I), andcatena-poly[[diiodidocadmium(II)]-μ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole], [CdI2(C24H18N4)]n, (II). Compounds (I) and (II) are closely related one-dimensional polymers based on 16- and 20-membered macrocycles along the chains, but they are not isomorphous. The chains are crosslinked into a two-dimensional networkviahydrogen bonds and π–π interactions in (I), and into a three-dimensional framework through π–π interactions in (II). One well-ordered solvent water molecule per asymmetric unit is included in (I) and forms O...Br hydrogen bonds.


2019 ◽  
Vol 75 (8) ◽  
pp. 1060-1064
Author(s):  
Lei Jia ◽  
Jun Zhang ◽  
Lin Du

The novel tetraphenylethylene derivative 4-methyl-N-[3-(1,2,2-triphenylethenyl)phenyl]benzenesulfonamide (abbreviated as MTBF), C33H27NO2S, was synthesized successfully and characterized by single-crystal X-ray diffraction, high-resolution mass spectroscopy and 1H NMR spectroscopy. MTBF crystallizes in the centrosymmetric monoclinic space group P21/c. In the crystal structure, the MTBF molecules are connected into a one-dimensional band and then a two-dimensional sheet by hydrogen bonds of the N—H...O and C—H...O types. The sheets are further linked to produce a three-dimensional network via C—H...π interactions. The molecules aggregate via these intermolecular forces, which restrain the intramolecular motions (RIM) and decrease the energy loss in the aggregation state, so as to open the radiative channels, and thus MTBF exhibits excellent fluorescence by aggregation-induced emission (AIE) enhancement.


2017 ◽  
Vol 76 (4) ◽  
pp. 747-753 ◽  
Author(s):  
Gong Yan ◽  
Su Philipp Oliver

In this paper, a high performance adsorbent (hydrous manganese oxides onto acylamino and hydroxyl functionalized hydrogel) containing manganese oxide was prepared by the cross-linking polymer; the novel composite adsorbent has an excellent adsorption for Hg(II) removal. The adsorbent was characterized by scanning electron microscopy and Fourier transform infrared analysis, the hydrogel adsorbent had a typical three-dimensional network structure, and manganese oxides particles were dispersed into the channel and pores structure. The adsorption of Hg2+ in water was tested by using the adsorbent. The results show that the adsorption isotherms were fitted well with Langmuir model, and the maximum Hg2+ adsorption capacity was 0.654 mmol g−1 (131.2 mg g−1). The adsorption kinetics followed a pseudo-second-order equation, and the adsorption equilibrium can be reached in the first 120 min. The optimum pH of adsorption was determined to be 8.0. The desorption efficiency of 94% can be reached using 0.7 mol L−1 HCl as the regeneration agent. The results suggest that this material can be a promising adsorbent for Hg2+ removal in several industrial processes.


2011 ◽  
Vol 412 ◽  
pp. 57-60 ◽  
Author(s):  
Xiao Qiang Wang ◽  
Meng Wang ◽  
Xiao Yan Zhu ◽  
Ming Ya Li

ZrO2 spherical nanoparticles were prepared by rheological phase reaction. The crystal structure, morphology and formation mechanism were characterized with X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR) and scanning electron microscopy (SEM), etc. Then three-dimensional photonic crystal was synthesized by sol-gel method and using surfactant as template. The study showed that well-controlled spherical particle is helpful to preparation of photonic crystal with adjustable apertures. Mesoporous ZrO2 was obtained with narrow pore size distributions.


2020 ◽  
Vol 10 (2) ◽  
pp. 133-148
Author(s):  
Ankaj Kaundal ◽  
Pravin Kumar ◽  
Rajendra Awasthi ◽  
Giriraj T. Kulkarni

Aim: The study was aimed to develop mucoadhesive buccal tablets using Aster ericoides leaves mucilage. Background : Mucilages are naturally occurring high-molecular-weight polyuronides, which have been extensively studied for their application in different pharmaceutical dosage forms. Objective: The objective of the present research was to establish the mucilage isolated from the leaves of Aster ericoides as an excipient for the formulation of the mucoadhesive buccal tablet. Method: The mucilage was isolated from the leaves of Aster ericoides by maceration, precipitated with acetone and characterized. Tablets were prepared using wet granulation technique and evaluated for various official tests. Results: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Conclusion: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Other: However, to prove the potency of the polymer, in vivo bioavailability studies in human volunteers are needed along with chronic toxicity studies in suitable animal models.


Sign in / Sign up

Export Citation Format

Share Document