scholarly journals Electromagnetic Interference Shield of Highly Thermal-Conducting, Light-Weight, and Flexible Electrospun Nylon 66 Nanofiber-Silver Multi-Layer Film

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1805
Author(s):  
Jaeyeon Kim ◽  
Suyeong Lee ◽  
Changho Kim ◽  
Yeongcheol Park ◽  
Mi-Hyun Kim ◽  
...  

A light-weight, flexible electromagnetic interference (EMI) shield was prepared by creating a layer-structured metal-polymer composite film consisting of electrospun nylon 66 nanofibers with silver films. The EMI shielding effectiveness (SE), specific SE, and absolute SE of the composite were as high as 60.6 dB, 67.9 dB cm3/g, and 6792 dB cm2/g in the X- and Ku-bands, respectively. Numerical and analytical calculations suggest that the energy of EM waves is predominantly absorbed by inter-layer multiple reflections. Because the absorbed EM energy is dissipated as heat, the thermal conductivity of absorption-dominant EMI shields is highly significant. Measured thermal conductivity of the composite was found to be 4.17 Wm−1K−1 at room temperature, which is higher than that of bulk nylon 66 by a factor of 16.7. The morphology and crystallinity of the composite were examined using scanning electron microscopy and differential scanning calorimetry, respectively. The enhancement of thermal conductivity was attributed to an increase in crystallinity of the nanofibers, which occurred during the electrospinning and subsequent hot pressing, and to the high thermal conductivity of the deposited silver films. The contribution of each fabrication process to the increase in thermal conductivity was investigated by measuring the thermal conductivity values after each fabrication process.

2018 ◽  
Vol 6 (6) ◽  
pp. 1476-1486 ◽  
Author(s):  
Fang Ren ◽  
Danping Song ◽  
Zhen Li ◽  
Lichuan Jia ◽  
Yuchen Zhao ◽  
...  

Graphene nanosheets and carbonyl iron-nickel alloy powder were used in a synergistic manner to fabricate cyanate ester nanocomposite with an excellent EMI shielding effectiveness and high thermal conductivity.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li Ma ◽  
Mahdi Hamidinejad ◽  
Biao Zhao ◽  
Caiyun Liang ◽  
Chul B. Park

AbstractLightweight, high-efficiency and low reflection electromagnetic interference (EMI) shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution. Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming. The unique layered foam/film structure was composed of PVDF/SiCnw/MXene (Ti3C2Tx) composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer. The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires (SiCnw) and 2D MXene nanosheets imparted superior EM wave attenuation capability. Furthermore, the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections. Meanwhile, the highly conductive PVDF/MWCNT/GnPs composite (~ 220 S m−1) exhibited superior reflectivity (R) of 0.95. The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz (R < 0.1) over the Ku-band (12.4 − 18.0 GHz) at a thickness of 1.95 mm. A peak SER of 3.1 × 10–4 dB was obtained which corresponds to only 0.0022% reflection efficiency. In consequence, this study introduces a feasible approach to develop lightweight, high-efficiency EMI shielding materials with ultralow reflection for emerging applications.


Nanoscale ◽  
2019 ◽  
Vol 11 (17) ◽  
pp. 8616-8625 ◽  
Author(s):  
Li Huang ◽  
Jianjun Li ◽  
Yibin Li ◽  
Xiaodong He ◽  
Ye Yuan

High-performance electromagnetic interference (EMI) shielding materials possess features of light weight, flexibility and excellent EMI shielding effectiveness.


NANO ◽  
2019 ◽  
Vol 14 (06) ◽  
pp. 1950075 ◽  
Author(s):  
Shaowei Lu ◽  
Yaoyao Bai ◽  
Jijie Wang ◽  
Dandan Chen ◽  
Keming Ma ◽  
...  

As the portable device hardware has been increasing at a noticeable rate, ultrathin flexible materials with the combination of high thermal conductivity and excellent electromagnetic interference (EMI) shielding performance are urgently needed. Here, we fabricated ethylene propylene diene monomer rubber with different loading graphene nanoplatelets (GnPs/EPDM) by a cost-efficient approach, which combines mixing, ultrasonication and compression. Further investigation demonstrates that the 8[Formula: see text]wt.% GnPs/EPDM with only 0.3[Formula: see text]mm in thickness shows excellent electrical conductivity (28.3[Formula: see text]S/m), thermal conductivity (0.79[Formula: see text]W/m[Formula: see text]K) and good mechanical properties. Besides, the 8[Formula: see text]wt.% GnPs/EPDM exhibits an EMI shielding effectiveness (SE) up to 33[Formula: see text]dB in the X-band (8.2–12.4[Formula: see text]GHz) and 35[Formula: see text]dB in the Ku-band (12.4–18[Formula: see text]GHz), superior to most of the reported rubber matrix. Additionally, the GnPs/EPDM shows excellent flexibility and stability with 95% and 94% retention of EMI SE even after repeated bending for 5000 times and corrosion (under 5% NaCl environment) for a week. Our flexible EMI shielding material will benefit the fast-growing next-generation commercial portable flexible electrons.


RSC Advances ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 1419-1427 ◽  
Author(s):  
Shaofeng Lin ◽  
Su Ju ◽  
Jianwei Zhang ◽  
Gang Shi ◽  
Yonglyu He ◽  
...  

As the demand for wearable and foldable electronic devices increases rapidly, ultrathin and flexible thermal conducting films with exceptional electromagnetic interference (EMI) shielding effectiveness (SE) are greatly needed.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guolong Sang ◽  
Pei Xu ◽  
Tong Yan ◽  
Vignesh Murugadoss ◽  
Nithesh Naik ◽  
...  

Abstract Lightweight microcellular polyurethane (TPU)/carbon nanotubes (CNTs)/ nickel-coated CNTs (Ni@CNTs)/polymerizable ionic liquid copolymer (PIL) composite foams are prepared by non-solvent induced phase separation (NIPS). CNTs and Ni@CNTs modified by PIL provide more heterogeneous nucleation sites and inhibit the aggregation and combination of microcellular structure. Compared with TPU/CNTs, the TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams with smaller microcellular structures have a high electromagnetic interference shielding effectiveness (EMI SE). The evaporate time regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values (69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/PIL reaches up to 187.2 and 211.5 dB/(g cm−3), respectively. The polarization losses caused by interfacial polarization between TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT synergistically attenuate the microwave energy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rongliang Yang ◽  
Xuchun Gui ◽  
Li Yao ◽  
Qingmei Hu ◽  
Leilei Yang ◽  
...  

AbstractLightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g−1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.


2021 ◽  
Author(s):  
Siyi Yan ◽  
Peng Li ◽  
Zhongshi Ju ◽  
He Chen ◽  
Jiangang Ma

Abstract Silver nanowire (AgNW) networks are promising transparent conducting materials for electromagnetic interference (EMI) shielding and diverse optoelectronic devices. However, the poor contact between adjacent AgNWs leads to low electrical conductivity and weak mechanical stability of AgNW networks, which are limiting the practical application of these electronics. Here we report an efficient strategy to improve the overall performance of AgNW networks, in which the AgNW networks are sandwiched between two layers of graphene films. The graphene films improve the contact of overlapped AgNWs and bridge the discrete AgNWs, and thus increase the conductivity of graphene/AgNWs/graphene (GAG) films. Microwave permittivity measurements together with mechanism analyses reveal that the graphene films can enhance the EMI shielding effectiveness of AgNW networks through offering extra conduction loss, multiple dielectric polarization centers and multi-reflection processes. As a result, the GAG film with an average transmittance of 88% exhibits a sheet resistance lower than 15 Ω sq− 1 and an EMI shielding effectiveness of 31 dB (in the frequency range of 8.2‒12.4 GHz) after repeated stretching and release at a strain of 40%. Such a total performance is superior to that of most of as-reported transparent conductors. The GAG films therefore show application potential in the age of Internet of Things that electromagnetic radiation pollutions are everywhere.


2017 ◽  
Vol 5 (5) ◽  
pp. 1095-1105 ◽  
Author(s):  
Jun Li ◽  
Hu Liu ◽  
Jiang Guo ◽  
Zhen Hu ◽  
Zhijiang Wang ◽  
...  

Flexible lightweight conductive nanocomposites prepared by self-assembly of gold nanoparticles on charged polymer nanofibers show enhanced EMI shielding effectiveness and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document