Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites

2018 ◽  
Vol 6 (6) ◽  
pp. 1476-1486 ◽  
Author(s):  
Fang Ren ◽  
Danping Song ◽  
Zhen Li ◽  
Lichuan Jia ◽  
Yuchen Zhao ◽  
...  

Graphene nanosheets and carbonyl iron-nickel alloy powder were used in a synergistic manner to fabricate cyanate ester nanocomposite with an excellent EMI shielding effectiveness and high thermal conductivity.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1805
Author(s):  
Jaeyeon Kim ◽  
Suyeong Lee ◽  
Changho Kim ◽  
Yeongcheol Park ◽  
Mi-Hyun Kim ◽  
...  

A light-weight, flexible electromagnetic interference (EMI) shield was prepared by creating a layer-structured metal-polymer composite film consisting of electrospun nylon 66 nanofibers with silver films. The EMI shielding effectiveness (SE), specific SE, and absolute SE of the composite were as high as 60.6 dB, 67.9 dB cm3/g, and 6792 dB cm2/g in the X- and Ku-bands, respectively. Numerical and analytical calculations suggest that the energy of EM waves is predominantly absorbed by inter-layer multiple reflections. Because the absorbed EM energy is dissipated as heat, the thermal conductivity of absorption-dominant EMI shields is highly significant. Measured thermal conductivity of the composite was found to be 4.17 Wm−1K−1 at room temperature, which is higher than that of bulk nylon 66 by a factor of 16.7. The morphology and crystallinity of the composite were examined using scanning electron microscopy and differential scanning calorimetry, respectively. The enhancement of thermal conductivity was attributed to an increase in crystallinity of the nanofibers, which occurred during the electrospinning and subsequent hot pressing, and to the high thermal conductivity of the deposited silver films. The contribution of each fabrication process to the increase in thermal conductivity was investigated by measuring the thermal conductivity values after each fabrication process.


NANO ◽  
2019 ◽  
Vol 14 (06) ◽  
pp. 1950075 ◽  
Author(s):  
Shaowei Lu ◽  
Yaoyao Bai ◽  
Jijie Wang ◽  
Dandan Chen ◽  
Keming Ma ◽  
...  

As the portable device hardware has been increasing at a noticeable rate, ultrathin flexible materials with the combination of high thermal conductivity and excellent electromagnetic interference (EMI) shielding performance are urgently needed. Here, we fabricated ethylene propylene diene monomer rubber with different loading graphene nanoplatelets (GnPs/EPDM) by a cost-efficient approach, which combines mixing, ultrasonication and compression. Further investigation demonstrates that the 8[Formula: see text]wt.% GnPs/EPDM with only 0.3[Formula: see text]mm in thickness shows excellent electrical conductivity (28.3[Formula: see text]S/m), thermal conductivity (0.79[Formula: see text]W/m[Formula: see text]K) and good mechanical properties. Besides, the 8[Formula: see text]wt.% GnPs/EPDM exhibits an EMI shielding effectiveness (SE) up to 33[Formula: see text]dB in the X-band (8.2–12.4[Formula: see text]GHz) and 35[Formula: see text]dB in the Ku-band (12.4–18[Formula: see text]GHz), superior to most of the reported rubber matrix. Additionally, the GnPs/EPDM shows excellent flexibility and stability with 95% and 94% retention of EMI SE even after repeated bending for 5000 times and corrosion (under 5% NaCl environment) for a week. Our flexible EMI shielding material will benefit the fast-growing next-generation commercial portable flexible electrons.


RSC Advances ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 1419-1427 ◽  
Author(s):  
Shaofeng Lin ◽  
Su Ju ◽  
Jianwei Zhang ◽  
Gang Shi ◽  
Yonglyu He ◽  
...  

As the demand for wearable and foldable electronic devices increases rapidly, ultrathin and flexible thermal conducting films with exceptional electromagnetic interference (EMI) shielding effectiveness (SE) are greatly needed.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 933 ◽  
Author(s):  
Fang Ren ◽  
Zheng-Zheng Guo ◽  
Han Guo ◽  
Li-Chuan Jia ◽  
Yu-Chen Zhao ◽  
...  

In this work, we propose novel layer-structured polymer composites (PCs) for manipulating the electromagnetic (EM) wave transport, which holds unique electromagnetic interference (EMI) shielding features. The as-prepared PCs with a multilayered structure exhibits significant improvement in overall EMI shielding effectiveness (EMI SE) by adjusting the contents and distribution of electrical and magnetic loss fillers. The layer-structured PCs with low nanofiller content (5 wt % graphene nanosheets (GNSs) and 15 wt % Fe3O4) and a thickness of only 2 mm exhibited ultrahigh electrical conductivity and excellent EMI SE, reaching up to 2000 S/m and 45.7 dB in the X-band, respectively. The increased EMI SE of the layer-structured PCs was mainly based on the improved absorption rather than the reflection of electromagnetic waves, which was attributed to the “absorb-reflect-reabsorb” process for the incident electromagnetic waves. This work may provide a simple and effective approach to achieve new EMI shielding materials, especially for absorption-dominated EMI shielding.


2016 ◽  
Vol 4 (2) ◽  
pp. 371-375 ◽  
Author(s):  
Qing Yuchang ◽  
Wen Qinlong ◽  
Luo Fa ◽  
Zhou Wancheng ◽  
Zhu Dongmei

Graphene nanosheets filled BaTiO3 ceramics with high-performance EMI shielding effectiveness, greater than 40 dB in the X-band at 1.5 mm thickness, were prepared via pressureless sintering.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rongliang Yang ◽  
Xuchun Gui ◽  
Li Yao ◽  
Qingmei Hu ◽  
Leilei Yang ◽  
...  

AbstractLightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g−1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.


2021 ◽  
Author(s):  
Siyi Yan ◽  
Peng Li ◽  
Zhongshi Ju ◽  
He Chen ◽  
Jiangang Ma

Abstract Silver nanowire (AgNW) networks are promising transparent conducting materials for electromagnetic interference (EMI) shielding and diverse optoelectronic devices. However, the poor contact between adjacent AgNWs leads to low electrical conductivity and weak mechanical stability of AgNW networks, which are limiting the practical application of these electronics. Here we report an efficient strategy to improve the overall performance of AgNW networks, in which the AgNW networks are sandwiched between two layers of graphene films. The graphene films improve the contact of overlapped AgNWs and bridge the discrete AgNWs, and thus increase the conductivity of graphene/AgNWs/graphene (GAG) films. Microwave permittivity measurements together with mechanism analyses reveal that the graphene films can enhance the EMI shielding effectiveness of AgNW networks through offering extra conduction loss, multiple dielectric polarization centers and multi-reflection processes. As a result, the GAG film with an average transmittance of 88% exhibits a sheet resistance lower than 15 Ω sq− 1 and an EMI shielding effectiveness of 31 dB (in the frequency range of 8.2‒12.4 GHz) after repeated stretching and release at a strain of 40%. Such a total performance is superior to that of most of as-reported transparent conductors. The GAG films therefore show application potential in the age of Internet of Things that electromagnetic radiation pollutions are everywhere.


2017 ◽  
Vol 5 (5) ◽  
pp. 1095-1105 ◽  
Author(s):  
Jun Li ◽  
Hu Liu ◽  
Jiang Guo ◽  
Zhen Hu ◽  
Zhijiang Wang ◽  
...  

Flexible lightweight conductive nanocomposites prepared by self-assembly of gold nanoparticles on charged polymer nanofibers show enhanced EMI shielding effectiveness and mechanical properties.


2021 ◽  
Vol 875 ◽  
pp. 160-167
Author(s):  
Muhammad Fayzan Shakir ◽  
Asra Tariq

Polymer nano composites based on poly vinyl chloride matrix were fabricated using polyaniline (PANI) and graphene nano platelets (GNP) as electrically conductive nano filler for the application of electromagnetic interference (EMI) shielding. DC conductivity was first evaluated by using cyclic voltammetry and found an increasing trend of electrical conductivity as PANI and GNP was added in PVC matrix that confirms the formation of electrically conductive network structure. Dielectric properties like dielectric constant, dielectric loss and AC conductivity were evaluated in frequency range of 100 Hz to 3 MHz that gives basic prediction for EMI shielding effectiveness. Vector Network Analyzer (VNA) was used to assess EMI shielding properties using coaxial cable method in 11GHz to 20GHz range and it was found that a maximum of 29 dB shielding was archived with the incorporation of 15 wt% of PANI in PVC. This value increased to 56 dB as 5 wt% GNP added in PVC/PANI 15 wt% blend. Interaction of matrix with filler, nature of filler and dispersion of filler in matrix are the key parameters for achieving high shielding effectiveness.


Sign in / Sign up

Export Citation Format

Share Document