scholarly journals Visualizing Polymer Damage Using Hyperspectral Imaging

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2071
Author(s):  
Monika Bleszynski ◽  
Shaun Mann ◽  
Maciej Kumosa

Silicone rubbers (SIRs) are common industrial materials which are often used for electrical insulation including weather sheds on non-ceramic insulators (NCIs). While SIRs are typically resilient to outside environments, aging can damage SIRs’ favorable properties such as hydrophobicity and electrical resistance. Detecting SIR aging and damage, however, can be difficult, especially in service. In this study we used hyperspectral imaging (HSI) and previously investigated aging methods as a proof of concept to show how HSI may be used to detect various types of aging damage in different SIR materials. The spectral signature changes in four different SIRs subjected to four different in-service aging environments all occurred between 400––650 nm. Therefore, remote sensing of NCIs using HSI could concentrate on bands below 700 nm to successfully detect in service SIR damage.

Author(s):  
Dimitris Manolakis ◽  
Ronald Lockwood ◽  
Thomas Cooley

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2407
Author(s):  
Hojun You ◽  
Dongsu Kim

Fluvial remote sensing has been used to monitor diverse riverine properties through processes such as river bathymetry and visual detection of suspended sediment, algal blooms, and bed materials more efficiently than laborious and expensive in-situ measurements. Red–green–blue (RGB) optical sensors have been widely used in traditional fluvial remote sensing. However, owing to their three confined bands, they rely on visual inspection for qualitative assessments and are limited to performing quantitative and accurate monitoring. Recent advances in hyperspectral imaging in the fluvial domain have enabled hyperspectral images to be geared with more than 150 spectral bands. Thus, various riverine properties can be quantitatively characterized using sensors in low-altitude unmanned aerial vehicles (UAVs) with a high spatial resolution. Many efforts are ongoing to take full advantage of hyperspectral band information in fluvial research. Although geo-referenced hyperspectral images can be acquired for satellites and manned airplanes, few attempts have been made using UAVs. This is mainly because the synthesis of line-scanned images on top of image registration using UAVs is more difficult owing to the highly sensitive and heavy image driven by dense spatial resolution. Therefore, in this study, we propose a practical technique for achieving high spatial accuracy in UAV-based fluvial hyperspectral imaging through efficient image registration using an optical flow algorithm. Template matching algorithms are the most common image registration technique in RGB-based remote sensing; however, they require many calculations and can be error-prone depending on the user, as decisions regarding various parameters are required. Furthermore, the spatial accuracy of this technique needs to be verified, as it has not been widely applied to hyperspectral imagery. The proposed technique resulted in an average reduction of spatial errors by 91.9%, compared to the case where the image registration technique was not applied, and by 78.7% compared to template matching.


2014 ◽  
Vol 369 (1643) ◽  
pp. 20130194 ◽  
Author(s):  
Michael D. Madritch ◽  
Clayton C. Kingdon ◽  
Aditya Singh ◽  
Karen E. Mock ◽  
Richard L. Lindroth ◽  
...  

Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 397
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Forest sustainable management aims to maintain the income of woody goods for companies, together with preserving non-productive functions as a benefit for the community. Due to the progress in platforms and sensors and the opening of the dedicated market, unmanned aerial vehicle–remote sensing (UAV–RS) is improving its key role in the forestry sector as a tool for sustainable management. The use of UAV (Unmanned Aerial Vehicle) in precision forestry has exponentially increased in recent years, as demonstrated by more than 600 references published from 2018 until mid-2020 that were found in the Web of Science database by searching for “UAV”+“forest”. This result is even more surprising when compared with similar research for “UAV”+“agriculture”, from which emerge about 470 references. This shows how UAV–RS research forestry is gaining increasing popularity. In Part II of this review, analyzing the main findings of the reviewed papers (227), numerous strengths emerge concerning research technical issues. UAV–RS is fully applicated for obtaining accurate information from practical parameters (height, diameter at breast height (DBH), and biomass). Research effectiveness and soundness demonstrate that UAV–RS is now ready to be applied in a real management context. Some critical issues and barriers in transferring research products are also evident, namely,(1) hyperspectral sensors are poorly used, and their novel applications should be based on the capability of acquiring tree spectral signature especially for pest and diseases detection, (2) automatic processes for image analysis are poorly flexible or based on proprietary software at the expense of flexible and open-source tools that can foster researcher activities and support technology transfer among all forestry stakeholders, and (3) a clear lack exist in sensors and platforms interoperability for large-scale applications and for enabling data interoperability.


2011 ◽  
Author(s):  
Samer Sabbah ◽  
Peter Rusch ◽  
Jörn-Hinnrich Gerhard ◽  
Christian Stöckling ◽  
Jens Eichmann ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 2013
Author(s):  
Konstantinos Topouzelis ◽  
Dimitris Papageorgiou ◽  
Alexandros Karagaitanakis ◽  
Apostolos Papakonstantinou ◽  
Manuel Arias Ballesteros

Remote sensing is a promising tool for the detection of floating marine plastics offering extensive area coverage and frequent observations. While floating plastics are reported in high concentrations in many places around the globe, no referencing dataset exists either for understanding the spectral behavior of floating plastics in a real environment, or for calibrating remote sensing algorithms and validating their results. To tackle this problem, we initiated the Plastic Litter Projects (PLPs), where large artificial plastic targets were constructed and deployed on the sea surface. The first such experiment was realised in the summer of 2018 (PLP2018) with three large targets of 10 × 10 m. Hereafter, we present the second Plastic Litter Project (PLP2019), where smaller 5 × 5 m targets were constructed to better simulate near-real conditions and examine the limitations of the detection with Sentinel-2 images. The smaller targets and the multiple acquisition dates allowed for several observations, with the targets being connected in a modular way to create different configurations of various sizes, material composition and coverage. A spectral signature for the PET (polyethylene terephthalate) targets was produced through modifying the U.S. Geological Survey PET signature using an inverse spectral unmixing calculation, and the resulting signature was used to perform a matched filtering processing on the Sentinel-2 images. The results provide evidence that under suitable conditions, pixels with a PET abundance fraction of at least as low as 25% can be successfully detected, while pinpointing several factors that significantly impact the detection capabilities. To the best of our knowledge, the 2018 and 2019 Plastic Litter Projects are to date the only large-scale field experiments on the remote detection of floating marine litter in a near-real environment and can be used as a reference for more extensive validation/calibration campaigns.


2018 ◽  
Vol 10 (12) ◽  
pp. 2027 ◽  
Author(s):  
Itiya Aneece ◽  
Prasad Thenkabail

As the global population increases, we face increasing demand for food and nutrition. Remote sensing can help monitor food availability to assess global food security rapidly and accurately enough to inform decision-making. However, advances in remote sensing technology are still often limited to multispectral broadband sensors. Although these sensors have many applications, they can be limited in studying agricultural crop characteristics such as differentiating crop types and their growth stages with a high degree of accuracy and detail. In contrast, hyperspectral data contain continuous narrowbands that provide data in terms of spectral signatures rather than a few data points along the spectrum, and hence can help advance the study of crop characteristics. To better understand and advance this idea, we conducted a detailed study of five leading world crops (corn, soybean, winter wheat, rice, and cotton) that occupy 75% and 54% of principal crop areas in the United States and the world respectively. The study was conducted in seven agroecological zones of the United States using 99 Earth Observing-1 (EO-1) Hyperion hyperspectral images from 2008–2015 at 30 m resolution. The authors first developed a first-of-its-kind comprehensive Hyperion-derived Hyperspectral Imaging Spectral Library of Agricultural crops (HISA) of these crops in the US based on USDA Cropland Data Layer (CDL) reference data. Principal Component Analysis was used to eliminate redundant bands by using factor loadings to determine which bands most influenced the first few principal components. This resulted in the establishment of 30 optimal hyperspectral narrowbands (OHNBs) for the study of agricultural crops. The rest of the 242 Hyperion HNBs were redundant, uncalibrated, or noisy. Crop types and crop growth stages were classified using linear discriminant analysis (LDA) and support vector machines (SVM) in the Google Earth Engine cloud computing platform using the 30 optimal HNBs (OHNBs). The best overall accuracies were between 75% to 95% in classifying crop types and their growth stages, which were achieved using 15–20 HNBs in the majority of cases. However, in complex cases (e.g., 4 or more crops in a Hyperion image) 25–30 HNBs were required to achieve optimal accuracies. Beyond 25–30 bands, accuracies asymptote. This research makes a significant contribution towards understanding modeling, mapping, and monitoring agricultural crops using data from upcoming hyperspectral satellites, such as NASA’s Surface Biology and Geology mission (formerly HyspIRI mission) and the recently launched HysIS (Indian Hyperspectral Imaging Satellite, 55 bands over 400–950 nm in VNIR and 165 bands over 900–2500 nm in SWIR), and contributions in advancing the building of a novel, first-of-its-kind global hyperspectral imaging spectral-library of agricultural crops (GHISA: www.usgs.gov/WGSC/GHISA).


Data ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 108
Author(s):  
Carmine Gambardella ◽  
Rosaria Parente ◽  
Alessandro Ciambrone ◽  
Marialaura Casbarra

Integrating the representation of the territory, through airborne remote sensing activities with hyperspectral and visible sensors, and managing complex data through dimensionality reduction for the identification of cannabis plantations, in Albania, is the focus of the research proposed by the multidisciplinary group of the Benecon University Consortium. In this study, principal components analysis (PCA) was used to remove redundant spectral information from multiband datasets. This makes it easier to identify the most prevalent spectral characteristics in most bands and those that are specific to only a few bands. The survey and airborne monitoring by hyperspectral sensors is carried out with an Itres CASI 1500 sensor owned by Benecon, characterized by a spectral range of 380–1050 nm and 288 configurable channels. The spectral configuration adopted for the research was developed specifically to maximize the spectral separability of cannabis. The ground resolution of the georeferenced cartographic data varies according to the flight planning, inserted in the aerial platform of an Italian Guardia di Finanza’s aircraft, in relation to the orography of the sites under investigation. The geodatabase, wherein the processing of hyperspectral and visible images converge, contains ancillary data such as digital aeronautical maps, digital terrain models, color orthophoto, topographic data and in any case a significant amount of data so that they can be processed synergistically. The goal is to create maps and predictive scenarios, through the application of the spectral angle mapper algorithm, of the cannabis plantations scattered throughout the area. The protocol consists of comparing the spectral data acquired with the CASI1500 airborne sensor and the spectral signature of the cannabis leaves that have been acquired in the laboratory with ASD Fieldspec PRO FR spectrometers. These scientific studies have demonstrated how it is possible to achieve ex ante control of the evolution of the phenomenon itself for monitoring the cultivation of cannabis plantations.


Sign in / Sign up

Export Citation Format

Share Document