scholarly journals A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
H. A. Aisyah ◽  
M. T. Paridah ◽  
S. M. Sapuan ◽  
R. A. Ilyas ◽  
A. Khalina ◽  
...  

Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.

2018 ◽  
Vol 38 (5) ◽  
pp. 211-248 ◽  
Author(s):  
Mun Wai Tham ◽  
MR Nurul Fazita ◽  
HPS Abdul Khalil ◽  
Nurul Zuhairah Mahmud Zuhudi ◽  
Mariatti Jaafar ◽  
...  

Rule of mixture models are usually used in the tensile properties prediction of polymer composites reinforced with synthetic fibres. They are less utilized for natural fibre/polymer composites due to natural fibres physical and mechanical properties variability which reduces rule of mixture model's prediction values accuracy compared to the experimental values. This had led to studies conducted by various researchers to improve the existing rule of mixture models to give a better reflection of the true natural fibres properties and enhance the rule of mixture models prediction accuracy. In this paper, rule of mixture model's utilization includes the existing rule of mixture models as well as proposed rule of mixture models which have one or more factors incorporated into existing rule of mixture models for natural fibre/polymer composites tensile properties prediction are reviewed.


2007 ◽  
Vol 83 (4) ◽  
pp. 482-484 ◽  
Author(s):  
John Balatinecz ◽  
Mohini Sain

Recent research, innovation and industrial development activities in the rapidly emerging field of natural fibre polymer composites, as well as the involvement and contributions of the Faculty of Forestry, University of Toronto, to this field of bio-materials science, are summarized. Key words: natural fibres, polymer composites, plastics, wood science, forestry, recycling, sustainable products


2020 ◽  
pp. 096739112091372
Author(s):  
Muhammad Ramzan Abdul Karim ◽  
Danish Tahir ◽  
Ehsan Ul Haq ◽  
Azhar Hussain ◽  
Muhammad Sohail Malik

Polymer composites are an important class of materials widely being used for many applications. But the main concern of non-degradability and adverse environmental impact of the polymer matrices and the synthetic reinforcements have given forth the need of environmental-friendly polymer matrices and reinforcements used in them. An attempt of such kind is to use the natural plant fibres as the reinforcements that have no harmful impact on the environment and also, they are cost effective. With growing interest in natural fibres in recent years, a lot of work is being done in various directions, which need to be gathered up for a specific interest. So, the present article is an attempt to review and discuss the research works that have evaluated the natural plant fibres as reinforcements in polymer composites. Natural fibre composites show variation of properties such as fibre’s source, type and structure. Interfacial adhesion between the fibre and the matrix is the most important factor when tensile properties of natural fibre composites are under consideration. The interfacial strength can be improved by some chemical modification of fibre surface, which changes the adhesion between fibre and matrix. These features of natural fibres as compared to synthetic fibres are motivating manufacturers and the end users to switch to natural fibre-based products.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2135
Author(s):  
Hatem Alhazmi ◽  
Syyed Adnan Raheel Shah ◽  
Muhammad Kashif Anwar ◽  
Ali Raza ◽  
Muhammad Kaleem Ullah ◽  
...  

Polymer composites have been identified as the most innovative and selective materials known in the 21st century. Presently, polymer concrete composites (PCC) made from industrial or agricultural waste are becoming more popular as the demand for high-strength concrete for various applications is increasing. Polymer concrete composites not only provide high strength properties but also provide specific characteristics, such as high durability, decreased drying shrinkage, reduced permeability, and chemical or heat resistance. This paper provides a detailed review of the utilization of polymer composites in the construction industry based on the circular economy model. This paper provides an updated and detailed report on the effects of polymer composites in concrete as supplementary cementitious materials and a comprehensive analysis of the existing literature on their utilization and the production of polymer composites. A detailed review of a variety of polymers, their qualities, performance, and classification, and various polymer composite production methods is given to select the best polymer composite materials for specific applications. PCCs have become a promising alternative for the reuse of waste materials due to their exceptional performance. Based on the findings of the studies evaluated, it can be concluded that more research is needed to provide a foundation for a regulatory structure for the acceptance of polymer composites.


2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


Sign in / Sign up

Export Citation Format

Share Document