scholarly journals Development and Characterization of Environmentally Friendly Wood Plastic Composites from Biobased Polyethylene and Short Natural Fibers Processed by Injection Moulding

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1692
Author(s):  
Celia Dolza ◽  
Eduardo Fages ◽  
Eloi Gonga ◽  
Jaume Gomez-Caturla ◽  
Rafael Balart ◽  
...  

Environmentally friendly wood plastic composites (WPC) with biobased high density polyethylene (BioHDPE) as the polymer matrix and hemp, flax and jute short fibers as natural reinforcements, were melt-compounded using twin-screw extrusion and shaped into pieces by injection molding. Polyethylene-graft-maleic anhydride (PE-g-MA) was added at two parts per hundred resin to the WPC during the extrusion process in order to reduce the lack in compatibility between the lignocellulosic fibers and the non-polar polymer matrix. The results revealed a remarkable improvement of the mechanical properties with the combination of natural fibers, along with PE-g-MA, highly improved stiffness and mechanical properties of neat BioHDPE. Particularly, hemp fiber drastically increased the Young’s modulus and impact strength of BioHDPE. Thermal analysis revealed a slight improvement in thermal stability with the addition of the three lignocellulosic fibers, increasing both melting and degradation temperatures. The incorporation of the fibers also increased water absorption due to their lignocellulosic nature, which drastically improved the polarity of the composite. Finally, fire behavior properties were also improved in terms of flame duration, thanks to the ability of the fibers to form char protective barriers that isolate the material from oxygen and volatiles.

2011 ◽  
Vol 471-472 ◽  
pp. 151-156 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Ahmad Haji Sahrim

We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites. Recycled high density polyethylene (rHDPE) and natural fibers were compounded into pellets by compounder, then the pellets were extruded using co-rotating twin-screw extruder and test specimens were prepared by hot and cold press process. From the study, samples with 0.5 wt% of antioxidants produce the highest strength and elasticity of composites. The effect of antioxidants presence on water uptake is minimal.


2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Farhad Arwinfar ◽  
Seyyed Khalil Hosseinihashemi ◽  
Ahmad Jahan Latibari ◽  
Amir Lashgari ◽  
Nadir Ayrilmis

Natural fibers from plants are gaining importance and may substitute wood in the production of wood plastic composites (WPC). To ensure continuity of fiber supply and sustainability of WPC industries, fibers of various types could be mixed together to obtain Mix WPC. However, research need to be carried out to identify the contribution of different fiber type collectively to the mechanical properties of Mix natural fiber polymer composite (NFPC). In this study, preliminary work on the use of natural fibre (NF) such as kenaf, sugar palm and pineapple leaf fibers in the preparation of Mix NFPC were carried out. Four different fiber mix samples with different fiber ratio and size were formulated using polypropylene (PP) as the polymer matrix. Montmorrilonite (MMT) filler was added at constant amount for enhancement of composite mechanical properties. Samples were mixed and prepared using a twin screw extruder and mini injection moulding resepectively. Individual fibers and NFPC prepared were characterized using thermogravimetric analyzer (TGA). Tensile, flexural and impact strength of the composites were determined. Generally, it was found that addition of fiber mix at 50% fiber loading enhance the tensile and flexural strength of the various NFPC with minimal exceptions. The impact strength of the composites were comparable to that of blank PP implying that addition of fiber gives additional advantage besides being eco-friendly. It was also found that higher kenaf loading and different size of fiber mix contribute positively to the various strengths measured. In addition to that, composition of individual fibers also contribute to the mechanical properties of the NFPCs


2013 ◽  
Vol 849 ◽  
pp. 269-276
Author(s):  
Olli Väntsi ◽  
Timo Kärki

The heat build-up and fire performance of wood plastic composites containing recycled mineral wool filler were investigated. Six wood polypropylene composites with recycled mineral wool content between 0 % and 64 % were evaluated. It was found that the heat build-up of the studied composites increased with initial addition of recycled mineral wool, but increasing the content of recycled mineral wool in the composites further did not have a notable effect onthe heat build-up. Fire performance investigation showed that the addition of recycled mineral wool into the composites did not decrease the magnitude of heat release rate peak, but decreased the total heat release of the composites. Investigation of residual masses after the pyrolysis demonstrated a good dispersion of recycled mineral wool fibers in the polymer matrix. It is concluded that fire protection of the polymer matrix is essential when developing the fire performance of wood plastic composites with recycled mineral wool as filler.


2019 ◽  
Vol 895 ◽  
pp. 15-20
Author(s):  
Raghavendra Subramanya ◽  
S.S. Prabhakara

Natural fibers, in particularly lignocellulosic fibers are attracting material scientists now days, due to their comparative advantages over synthetic fibers. Biodegradable composites reinforced with short banana fibre after alkali treatment along with cassava starch matrix were prepared using the hot compression method. The mechanical properties like tensile strength and impact strength were investigated. Mechanical properties of the composites made from alkali treated fibres were superior to the untreated fibres. SEM observations on the fracture surface of composites showed that the surface modification of the fibre occurred and improved fibre–matrix adhesion. Keywords: Surface modification; banana fiber; Biodegradable composites; Mechanical properties; Matrix.


Sign in / Sign up

Export Citation Format

Share Document