scholarly journals Effect of Stretching on Crystalline Structure, Ferroelectric and Piezoelectric Properties of Solution-Cast Nylon-11 Films

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2037
Author(s):  
Jima Wu ◽  
Yuheng Fu ◽  
Guo-Hua Hu ◽  
Shan Wang ◽  
Chuanxi Xiong

Compared to polyvinylidene fluoride (PVDF) and its copolymers, castor-oil-derived nylon-11 has been less explored over the past decades, despite its excellent piezoelectric properties at elevated temperatures. To utilize nylon-11 for future sensor or vibrational energy harvesting devices, it is important to control the formation of the electroactive δ′ crystal phase. In this work, nylon-11 films were first fabricated by solution-casting and were then uniaxially stretched at different stretching ratios (SR) and temperatures (Ts) to obtain a series of stretched films. The combination of two-dimensional wide-angle X-ray diffraction (2D-WAXD) and differential scanning calorimetry (DSC) techniques showed that the fraction of the δ′ crystal phase increased with the stretching ratio and acquired a maximum at a Ts of 80 °C. Further, it was found that the ferroelectric and piezoelectric properties of the fabricated nylon-11 films could be correlated well with their crystalline structure. Consequently, the stretched nylon-11 film stretched at an SR of 300% and a Ts of 80 °C showed maximum remanent polarization and a remarkable piezoelectric coefficient of 7.2 pC/N. A simple piezoelectric device with such a nylon-11 film was made into a simple piezoelectric device, which could generate an output voltage of 1.5 V and a current of 11 nA, respectively.

Author(s):  
Afzana Anwer ◽  
S. Eilidh Bedford ◽  
Richard J. Spontak ◽  
Alan H. Windle

Random copolyesters composed of wholly aromatic monomers such as p-oxybenzoate (B) and 2,6-oxynaphthoate (N) are known to exhibit liquid crystalline characteristics at elevated temperatures and over a broad composition range. Previous studies employing techniques such as X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) have conclusively proven that these thermotropic copolymers can possess a significant crystalline fraction, depending on molecular characteristics and processing history, despite the fact that the copolymer chains possess random intramolecular sequencing. Consequently, the nature of the crystalline structure that develops when these materials are processed in their mesophases and subsequently annealed has recently received considerable attention. A model that has been consistent with all experimental observations involves the Non-Periodic Layer (NPL) crystallite, which occurs when identical monomer sequences enter into register between adjacent chains. The objective of this work is to employ electron microscopy to identify and characterize these crystallites.


2021 ◽  
Vol 22 (14) ◽  
pp. 7365
Author(s):  
Piotr Cysewski ◽  
Maciej Przybyłek ◽  
Anna Kowalska ◽  
Natalia Tymorek

In this study, the temperature-dependent solubility of nicotinamide (niacin) was measured in six neat solvents and five aqueous-organic binary mixtures (methanol, 1,4-dioxane, acetonitrile, DMSO and DMF). It was discovered that the selected set of organic solvents offer all sorts of solvent effects, including co-solvent, synergistic, and anti-solvent features, enabling flexible tuning of niacin solubility. In addition, differential scanning calorimetry was used to characterize the fusion thermodynamics of nicotinamide. In particular, the heat capacity change upon melting was measured. The experimental data were interpreted by means of COSMO-RS-DARE (conductor-like screening model for realistic solvation–dimerization, aggregation, and reaction extension) for concentration dependent reactions. The solute–solute and solute–solvent intermolecular interactions were found to be significant in all of the studied systems, which was proven by the computed mutual affinity of the components at the saturated conditions. The values of the Gibbs free energies of pair formation were derived at an advanced level of theory (MP2), including corrections for electron correlation and zero point vibrational energy (ZPE). In all of the studied systems the self-association of nicotinamide was found to be a predominant intermolecular complex, irrespective of the temperature and composition of the binary system. The application of the COSMO-RS-DARE approach led to a perfect match between the computed and measured solubility data, by optimizing the parameter of intermolecular interactions.


2013 ◽  
Vol 52 (40) ◽  
pp. 14328-14334 ◽  
Author(s):  
Juan Ramos-Cano ◽  
Mario Miki-Yoshida ◽  
André Marino Gonçalves ◽  
José Antônio Eiras ◽  
Jesús González-Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document