scholarly journals Stimulus-Responsive Polymers Based on Polypeptoid Skeletons

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2089
Author(s):  
Rui Fang ◽  
Junwei Pi ◽  
Tiantian Wei ◽  
Amjad Ali ◽  
Li Guo

Polypeptoids have attracted a lot of atteSDntion because of their unique structural characteristics and special properties. Polypeptoids have the same main chain structures to polypeptides, making them have low cytotoxicity and excellent biocompatibility. Polypeptoids can also respond to external environmental changes by modifying the configurations of the side chains. The external stimuli can be heat, pH, ions, ultraviolet/visible light and active oxygen or their combinations. This review paper discussed the recent research progress in the field of stimulus-responsive polypeptoids, including the design of new stimulus-responsive polypeptoid structures, controlled actuation factors in response to external stimuli and the application of responsive polypeptoid biomaterials in various biomedical and biological nanotechnology, such as drug delivery, tissue engineering and biosensing.

Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


2021 ◽  
Vol 5 (4) ◽  
pp. 101
Author(s):  
Menglian Wei ◽  
Yu Wan ◽  
Xueji Zhang

Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.


2021 ◽  
Vol 25 ◽  
Author(s):  
Jian Chen ◽  
Mengjing Zhu ◽  
Fuwei Xianga ◽  
Junfeng Li ◽  
Hongjun Yang ◽  
...  

: In recent years, the development of the chemical industry has been moving in a green, safe and efficient direction. Oxidation reactions are one of the most important types of reaction, and have key applications in food, medicine, and cosmetics, petrochemicals. However, the occurrence of the oxidation reaction is accompanied by a strong exothermic phenomenon, and improper control can easily lead to safety problems and even explosions. The realization of an environmentally friendly oxidation reaction is a key industrial milestone. The unique structural characteristics of microreactors result in good mass and heat transfer performance, precise control of the reaction temperature, reduced risk of explosion, improved safety production and selectivity of products. These unique advantages of the microreactor determine its significant application value in oxidation reactions. In this paper, the research progress of several typical oxidation reactions including alkane oxidation, alcohol oxidation, aldosterone oxidation, aromatics oxidation and olefin oxidation combined with microreactors is reviewed systematically.


The dynamic composition of components is an emerging concept that aims to allow a new application to be constructed based on a user’s request. This is achieved by dynamically composing and assembling disturbed components with home ones. This paper presents a framework architecture for the dynamic composition of components that can extract pertinent contextual data and combine them with explicit/implicit intent, in order to compose the relevant components to meet the real requirements of the user. The proposed architecture includes a user feedback system that is appropriate for the use context in terms of the user profile and technical/domain knowledge. Our platform can consult the end user in order to resolve eventual composition ambiguities. The dynamic aspect of our proposition involves (i) the detection of environmental changes in response to dynamic triggers; (ii) interactive adaptation to internal changes and external stimuli; (iii) determination of the real intent of the end user; and (iv) dynamic generation of different composition plans and selection of the most appropriate option, based on context data and user intent.


2020 ◽  
Vol 26 (1) ◽  
pp. 130-151 ◽  
Author(s):  
Atsushi Masumori ◽  
Lana Sinapayen ◽  
Norihiro Maruyama ◽  
Takeshi Mita ◽  
Douglas Bakkum ◽  
...  

Living organisms must actively maintain themselves in order to continue existing. Autopoiesis is a key concept in the study of living organisms, where the boundaries of the organism are not static but dynamically regulated by the system itself. To study the autonomous regulation of a self-boundary, we focus on neural homeodynamic responses to environmental changes using both biological and artificial neural networks. Previous studies showed that embodied cultured neural networks and spiking neural networks with spike-timing dependent plasticity (STDP) learn an action as they avoid stimulation from outside. In this article, as a result of our experiments using embodied cultured neurons, we find that there is also a second property allowing the network to avoid stimulation: If the agent cannot learn an action to avoid the external stimuli, it tends to decrease the stimulus-evoked spikes, as if to ignore the uncontrollable input. We also show such a behavior is reproduced by spiking neural networks with asymmetric STDP. We consider that these properties are to be regarded as autonomous regulation of self and nonself for the network, in which a controllable neuron is regarded as self, and an uncontrollable neuron is regarded as nonself. Finally, we introduce neural autopoiesis by proposing the principle of stimulus avoidance.


2020 ◽  
Vol 8 (29) ◽  
pp. 6217-6232
Author(s):  
Divambal Appavoo ◽  
Sung Young Park ◽  
Lei Zhai

Stimulus-responsive polymers have been used in improving the efficacy of medical diagnostics through different approaches including enhancing the contrast in imaging techniques and promoting the molecular recognition in diagnostic assays.


2017 ◽  
Vol 8 (1) ◽  
pp. 127-143 ◽  
Author(s):  
Menglian Wei ◽  
Yongfeng Gao ◽  
Xue Li ◽  
Michael J. Serpe

Responsive polymer-based materials are capable of altering their chemical and/or physical properties upon exposure to external stimuli. This review highlights their use for sensing and biosensing, drug delivery, and artificial muscles/actuators.


2010 ◽  
Vol 48 (9) ◽  
pp. 2032-2043 ◽  
Author(s):  
Cong-Duan Vo ◽  
Julien Rosselgong ◽  
Steven P. Armes ◽  
Nicola Tirelli

Sign in / Sign up

Export Citation Format

Share Document