scholarly journals The Effect of SEBS/Halloysite Masterbatch Obtained in Different Extrusion Conditions on the Properties of Hybrid Polypropylene/Glass Fiber Composites for Auto Parts

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3560
Author(s):  
Zina Vuluga ◽  
Catalina-Gabriela Sanporean ◽  
Denis Mihaela Panaitescu ◽  
George Mihail Teodorescu ◽  
Mihai Cosmin Corobea ◽  
...  

Masterbatches from a linear poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and halloysite nanotubes (HNT-QM) were obtained in different conditions of temperature and shear using two co-rotating twin-screw extruders. The influence of screw configuration and melt processing conditions on the morpho-structural, thermal and mechanical properties of masterbatches at macro and nanoscale was studied. A good dispersion of halloysite nanotubes and better thermal stability and tensile and nanomechanical properties were obtained at a lower temperature profile and higher screw speed. The effect of masterbatches, the best and worst alternatives, on the properties of a polypropylene (PP)–glass fiber (GF) composite was also evaluated. Double hardness, tensile strength and modulus and four times higher impact strength were obtained for PP/GF composites containing masterbatches compared to pristine PP. However, the masterbatch with the best properties led further to enhanced mechanical properties of the PP/GF composite. A clear difference between the effects of the two masterbatches was obtained by nanoindentation and nanoscratch tests. These analyses proved to be useful for the design of polymer composites for automotive parts, such as bumpers or door panels. This study demonstrated that setting-up the correct processing conditions is very important to obtain the desired properties for automotive applications.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 755 ◽  
Author(s):  
Jong-Young Lee ◽  
Kwang-Jea Kim

Polyamide66 (PA66) hydrolysis affects the mechanical properties of Polyamide66/glass fiber (PA66/GF) composites. We investigated the effects of monoethylene glycol (MEG) on the degree of hydrolysis and mechanical properties of four different commercial PA66/glass fiber composites. Using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS), we identified the byproducts of PA66 composite hydrolysis: carboxylic acid and alkylamine substances. The degree of hydrolysis increased as the immersion time in MEG increased. However, the tensile and flexural properties decreased due to hydrolysis. The tensile strength decreased by 42–45%; however, elongation increased by 23–63%. When PA66 absorbs MEG at 130 °C, the materials molecular chains’ bonding force decreased, resulting in increased elongation.


2014 ◽  
Vol 666 ◽  
pp. 8-16
Author(s):  
A. Saad Najim ◽  
Mohammed Adwaa

This work deals with studying the mechanical properties specially fatigue behavior for high performance composite materials of poly ether ether ketone (PEEK)/glass fiber, which are used in Aircraft Industry. Two materials have been used: (PEEK natural) and (PEEK+30% glass fiber).To identify the type of (PEEK), infrared (FTIR) test has been conducted. X-ray test has been used to measure the (PEEK) crystalline ,also the tensile properties, impact strength and the fatigue test are performed.The results show that FTIR test peaks are for standard PEEK polymer and that GFRP increases the crystalline of (PEEK) material , while the tensile , impact and fatigue properties of (PEEK) decreases by adding GF to PEEK .


2018 ◽  
Vol 24 (8) ◽  
pp. 6000-6003
Author(s):  
Y. Narendra Babu ◽  
M. Venkateswara Rao ◽  
A. Gopala Krishna

The objective of this paper is to experimentally study tensile strength, Impact strength, Flexural strength and Wear Characteristics of the Nano tubular material Halloysite Nanotubes (HNT) into ABS/PC blend with ABS and PC compositions in the ratio 40/60. We have fabricated the Thermoplastic Nanocomposites specimens as per ASTM standards, with the Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) blend as matrix material and with 1%, 2%, 3%, 4%, 5% and 6% HNT reinforcement material using Co–Rotating Intermeshing Twin Screw Extruder by Melt Compounding. Mechanical Tests were conducted and results were compared with the original ABS/PC blend. Effects of Halloysite Nanotubes reinforcement percentage were discussed in detail. The obtained results suggested that ABS/PC (40/60) blend with 4% reinforcement of Halloysite Nanotubes executed better mechanical properties. SEM is used to study the failure mechanism of the proposed Nano composite.


2005 ◽  
Vol 39 (22) ◽  
pp. 2023-2038 ◽  
Author(s):  
V. Alvarez ◽  
A. Iannoni ◽  
J. M. Kenny ◽  
A. Vazquez

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2719
Author(s):  
Marissa A. Paglicawan ◽  
Carlo S. Emolaga ◽  
Johanna Marie B. Sudayon ◽  
Kenneth B. Tria

The application of natural fiber-reinforced composites is gaining interest in the automotive, aerospace, construction, and marine fields due to its advantages of being environmentally friendly and lightweight, having a low cost, and having a lower energy consumption during production. The incorporation of natural fibers with glass fiber hybrid composites may lead to some engineering and industrial applications. In this study, abaca/glass fiber composites were prepared using the vacuum-assisted resin transfer method (VARTM). The effect of different lamination stacking sequences of abaca–glass fibers on the tensile, flexural, and impact properties was evaluated. The morphological failure behavior of the fractured-tensile property was evaluated by 3D X-ray Computed Tomography and Scanning Electron Microscopy (SEM). The results of mechanical properties were mainly dependent on the volume fraction of abaca fibers, glass fibers, and the arrangement of stacking sequences in the laminates. The higher volume fraction of abaca fiber resulted in a decrease in mechanical properties causing fiber fracture, resin cracking, and fiber pullout due to poor bonding between the fibers and the matrix. The addition of glass woven roving in the composites increased the mechanical properties despite the occurrence of severe delamination between the abaca–strand mat glass fiber.


Sign in / Sign up

Export Citation Format

Share Document