scholarly journals Experimental Study on the Interlaminar Fracture Properties of Carbon Fibre Reinforced Polymer Composites with a Single Embedded Toughened Film

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4103
Author(s):  
Evanthia J. Pappa ◽  
James A. Quinn ◽  
James J. Murray ◽  
James R. Davidson ◽  
Conchúr M. Ó Brádaigh ◽  
...  

In this study, two types of single polymer films have been inserted in a composite laminate to examine their toughening effects on mechanical properties. The first is a thermoplastic polyurethane (PU) film, and the second is an adhesive epoxy film featuring a polyester net. The laminates were manufactured either using a co-curing (CC) process or a secondary bonding (SB) process used for the epoxy film. Mode I and mode II interlaminar fracture toughness were measured for laminates manufactured by both processes and compared with the corresponding reference laminate toughness. A significant increase in both mode I and mode II toughness resulted when introducing a single PU film, approximately 290% and 50%, respectively. Similarly, the epoxy film improved the interlaminar fracture properties; the CC process produced an increase of 175% for mode II toughness, while the SB adhesive film showed an increase of 75% for mode II toughness.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Zhen Pei Chow ◽  
Zaini Ahmad ◽  
King Jye Wong ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal–composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium–glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen’s edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.


2021 ◽  
pp. 002199832110492
Author(s):  
Kimiyoshi Naito ◽  
Chiemi Nagai

The mode-I and mode-II interlaminar fracture properties of high modulus pitch-based carbon fiber reinforced polymers (CFRPs) (fiber: K13C; resin: EX-1515 cyanate ester) modified with 20–30 nm β-SiC nanoparticles or multiwalled-carbon nanotubes (MWCNTs) were investigated. Different volume fractions of both the β-SiC nanoparticles (1, 2, 5, and 10 vol%) and MWCNTs (1, 3, 5, and 7 vol%) were tested. The values of the mode-I and mode-II interlaminar fracture toughness of the CFRPs containing the lowest volume fractions of these nanostructures were larger compared with the unfilled composite but decreased with increasing the volume fraction of the inclusions. No differences in mechanical properties were observed among the different nanostructure types.


Tribologia ◽  
2019 ◽  
Vol 286 (4) ◽  
pp. 87-94 ◽  
Author(s):  
Daniel Pieniak ◽  
Leszek GIL ◽  
Albin Michał WIT-RUSIECKI ◽  
Aneta KRZYŻAK ◽  
Jarosław SELECH ◽  
...  

The aim of the study was to determine the usable and quality features and tribological properties of four Carbon Fibre Reinforced Polymer laminates (CFRP) newly developed by the authors and to indicate the structures with the most advantageous functional properties. The developed material samples were based on two types of prepreg, Kord Carbon (Fiberpreg GmbH) with twill weave and carbon fibres (UD) by the manufacturer (G. Angeloni S.R.L) with a unidirectional system. In the structure of half of the total number of samples, a manufacturer's (NTPT) epoxy adhesive film (AF) layer was used. Tests of indentation hardness (universal) were carried out according to the Oliver-Pharr method. Tests of resistance to abrasive wear were carried out in dry sliding friction conditions, using the ball-disc method. In combination, a ball made of aluminium oxide (Al2O3) was used as a cooperating element. The test results indicate a significant impact of the structure of the tested materials on the increase in contact strength and the improvement of the tribological properties that result from the application of the AF layer.


Sign in / Sign up

Export Citation Format

Share Document