scholarly journals Towards Real-Time In-Situ Mid-Infrared Spectroscopic Ellipsometry in Polymer Processing

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Alexander Ebner ◽  
Robert Zimmerleiter ◽  
Kurt Hingerl ◽  
Markus Brandstetter

Recent developments in mid-infrared (MIR) spectroscopic ellipsometry enabled by quantum cascade lasers (QCLs) have resulted in a drastic improvement in signal-to-noise ratio compared to conventional thermal emitter based instrumentation. Thus, it was possible to reduce the acquisition time for high-resolution broadband ellipsometric spectra from multiple hours to less than 1 s. This opens up new possibilities for real-time in-situ ellipsometry in polymer processing. To highlight these evolving capabilities, we demonstrate the benefits of a QCL based MIR ellipsometer by investigating single and multilayered polymer films. The molecular structure and reorientation of a 2.5 µm thin biaxially oriented polyethylene terephthalate film is monitored during a stretching process lasting 24.5 s to illustrate the perspective of ellipsometric measurements in dynamic processes. In addition, a polyethylene/ethylene vinyl alcohol/polyethylene multilayer film is investigated at a continuously varying angle of incidence (0∘– 50∘) in 17.2 s, highlighting an unprecedented sample throughput for the technique of varying angle spectroscopic ellipsometry in the MIR spectral range. The obtained results underline the superior spectral and temporal resolution of QCL ellipsometry and qualify this technique as a suitable method for advanced in-situ monitoring in polymer processing.

Author(s):  
Alexander Ebner ◽  
Robert Zimmerleiter ◽  
Kurt Hingerl ◽  
Markus Brandstetter

Recent developments in mid-infrared (MIR) spectroscopic ellipsometry enabled by quantum cascade lasers (QCLs) resulted in a drastic improvement in signal-to-noise ratio compared to conventional thermal emitter based instrumentation. Thus, it was possible to reduce the acquisition time for high-resolution broadband ellipsometric spectra from multiple hours to less than 1 second. This opens up new possibilities for real-time in-situ ellipsometry in polymer processing. To highlight these evolving capabilities we demonstrate the benefits of a QCL based MIR ellipsometer by investigating single and multilayered polymer films. The molecular structure and reorientation of a 2.5m thin biaxially oriented polyethylene terephtalate film is monitored during a stretching process lasting 24.5 s to illustrate the perspective of ellipsometric measurements in dynamic processes. In addition, a polyethylene/ethylene vinyl alcohol/polyethylene multilayer film is investigated at continuously varying angle of incidence ( 0∘ – 50∘) in 17.2 s, highlighting an unprecedented sample throughput for the technique of varying angle spectroscopic ellipsometry in the MIR spectral range. The obtained results underline the superior spectral and temporal resolution of QCL ellipsometry and qualify this technique as suitable method for advanced in-situ monitoring in polymer processing.


2012 ◽  
Vol 41 (10) ◽  
pp. 2965-2970 ◽  
Author(s):  
C.M. Lennon ◽  
L.A. Almeida ◽  
R.N. Jacobs ◽  
J.K. Markunas ◽  
P.J. Smith ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennifer Zehner ◽  
Anja Røyne ◽  
Pawel Sikorski

AbstractBiocementation is commonly based on microbial-induced carbonate precipitation (MICP) or enzyme-induced carbonate precipitation (EICP), where biomineralization of $$\text {CaCO}_{3}$$ CaCO 3 in a granular medium is used to produce a sustainable, consolidated porous material. The successful implementation of biocementation in large-scale applications requires detailed knowledge about the micro-scale processes of $$\text {CaCO}_{3}$$ CaCO 3 precipitation and grain consolidation. For this purpose, we present a microscopy sample cell that enables real time and in situ observations of the precipitation of $$\text {CaCO}_{3}$$ CaCO 3 in the presence of sand grains and calcite seeds. In this study, the sample cell is used in combination with confocal laser scanning microscopy (CLSM) which allows the monitoring in situ of local pH during the reaction. The sample cell can be disassembled at the end of the experiment, so that the precipitated crystals can be characterized with Raman microspectroscopy and scanning electron microscopy (SEM) without disturbing the sample. The combination of the real time and in situ monitoring of the precipitation process with the possibility to characterize the precipitated crystals without further sample processing, offers a powerful tool for knowledge-based improvements of biocementation.


2002 ◽  
Vol 68 (11) ◽  
pp. 5737-5740 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Geraldine Bresolin ◽  
Klaus Neuhaus ◽  
Kevin P. Francis ◽  
...  

ABSTRACT Bioluminescent mutants of Yersinia enterocolitica were generated by transposon mutagenesis using a promoterless, complete lux operon (luxCDABE) derived from Photorhabdus luminescens, and their production of light in the cheese environment was monitored. Mutant B94, which had the lux cassette inserted into an open reading frame of unknown function was used for direct monitoring of Y. enterocolitica cells on cheeses stored at 10°C by quantifying bioluminescence using a photon-counting, intensified charge-coupled device camera. The detection limit on cheese was 200 CFU/cm2. Bioluminescence of the reporter mutant was significantly regulated by its environment (NaCl, temperature, and cheese), as well as by growth phase, via the promoter the lux operon had acquired upon transposition. At low temperatures, mutant B94 did not exhibit the often-reported decrease of photon emission in older cells. It was not necessary to include either antibiotics or aldehyde in the food matrix in order to gain quantitative, reproducible bioluminescence data. As far as we know, this is the first time a pathogen has been monitored in situ, in real time, in a “real-product” status, and at a low temperature.


2000 ◽  
Vol 619 ◽  
Author(s):  
Y. Gao ◽  
A.H. Mueller ◽  
E.A. Irene ◽  
O. Auciello ◽  
A.R. Krauss ◽  
...  

ABSTRACTAn in situ study of barrier layers using spectroscopic ellipsometry (SE) and Time-of-Flight (ToF) mass spectroscopy of recoiled ions (MSRI) is presented. First the formation of copper silicides has been observed by real-time SE and in situ MSRI in annealed Cu/Si samples. Second TaSiN films as barrier layers for copper interconnects were investigated. Failure of the TaSiN layers in Cu/TaSiN/Si samples was detected by real-time SE during annealing and confirmed by in situ MSRI. The effect of nitrogen concentration on TaSiN film performance as a barrier was also examined. The stability of both TiN and TaSiN films as barriers for electrodes for dynamic random access memory (DRAM) devices has been studied. It is shown that a combination of in situ SE and MSRI can be used to monitor the evolution of barrier layers and detect the failure of barriers in real-time.


2011 ◽  
Author(s):  
Elfed Lewis ◽  
John Clifford ◽  
Colin Fitzpatrick ◽  
Gerard Dooly ◽  
Weizhong Zhao ◽  
...  

2018 ◽  
Vol 6 (6) ◽  
pp. 1701337 ◽  
Author(s):  
Jiajun Tian ◽  
Yanrong He ◽  
Juntao Li ◽  
Jie Wei ◽  
Gangqiang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document