scholarly journals Wood Dust Flammability Analysis by Microscale Combustion Calorimetry

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Qiang Xu ◽  
Lin Jiang ◽  
Andrea Majlingova ◽  
Nikoleta Ulbrikova ◽  
Rhoda Afriyie Mensah ◽  
...  

To study the practicability of a micro combustion calorimeter to analyze the calorimetry kinetics of wood, a micro combustion calorimeter with 13 heating rates from 0.1 to 5.5 K/s was used to perform the analysis of 10 kinds of common hardwood and softwood samples. As a microscale combustion measurement method, MCC (microscale combustion calorimetry) can be used to judge the flammability of materials. However, there are two methods for measuring MCC: Method A and Method B. However, there is no uniform standard for the application of combustible MCC methods. In this study, the two MCC standard measurement Methods A and B were employed to check their practicability. With Method A, the maximum specific heat release rate, heat release temperature, and specific heat release of the samples were obtained at different heating rates, while for Method B, the maximum specific combustion rate, combustion temperature and net calorific values of the samples were obtained at different heating rates. The ignition capacity and heat release capacity were then derived and evaluated for all the common hardwood and softwood samples. The results obtained by the two methods have significant differences in the shape of the specific heat release rate curves and the amplitude of the characteristic parameters, which lead to the differences of the derived parameters. A comparison of the specific heat release and the net calorific heat of combustion with the gross caloric values and heating values obtained by bomb calorimetry was also made. The results show that Method B has the potentiality to evaluate the amount of combustion heat release of materials.

2018 ◽  
Vol 22 (2) ◽  
pp. 1025-1036
Author(s):  
Qiang Xu ◽  
Cong Jin ◽  
Gregory Griffin ◽  
Jordan Hristov ◽  
Dejan Cvetinovic ◽  
...  

Different scale tests to explore the influence of fiberglass mesh on the fire behavior of expanded polystyrene (EPS) have been conducted. Micro scale combustion calorimeter to measure the heat release rate per unit mass, heat release capacity, and the total heat release of EPS and as well as the fiberglass for milligram specimen mass has been used. Cone colorimeter bench scale burning tests with the EPS specimens and EPS-fiberglass compound specimens have been carried out. The heat release rate per unit area, ignition times, and the derived minimum igniting heat fluxes were determined. Comparative burning tests on the fire spread tendency of EPS and EPS-fiberglass compound specimens have been carried out. It was established that the fiberglass mesh stabilizes the EPS fire as a wick fire due to the adherence of the melting polystyrene adheres to the fiberglass mesh and this causes an upwards fire spread.


2021 ◽  
Vol 11 (8) ◽  
pp. 3463
Author(s):  
Dushyant M. Chaudhari ◽  
Stanislav I. Stoliarov ◽  
Mark W. Beach ◽  
Kali A. Suryadevara

Polyisocyanurate (PIR) foam is a robust thermal insulation material utilized widely in the modern construction. In this work, the flammability of one representative example of this material was studied systematically using experiments and modeling. The thermal decomposition of this material was analyzed through thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry. The thermal transport properties of the pyrolyzing foam were evaluated using Controlled Atmosphere Pyrolysis Apparatus II experiments. Cone calorimetry tests were also carried out on the foam samples to quantify the contribution of the blowing agent (contained within the foam) to its flammability, which was found to be significant. A complete pyrolysis property set was developed and was shown to accurately predict the results of all aforementioned measurements. The foam was also subjected to full-scale flame spread tests, similar to the Single Burning Item test. A previously developed modeling approach based on a coupling between detailed pyrolysis simulations and a spatially-resolved relationship between the total heat release rate and heat feedback from the flame, derived from the experiments on a different material in the same experimental setup, was found to successfully predict the evolution of the heat release rate measured in the full-scale tests on the PIR foam.


2008 ◽  
Vol 18 (2) ◽  
pp. 111-124 ◽  
Author(s):  
C. Chen ◽  
L. Qu ◽  
Y. X. Yang ◽  
G. Q. Kang ◽  
W. K. Chow

2021 ◽  
Vol 11 (7) ◽  
pp. 3247
Author(s):  
Dong Hwan Kim ◽  
Chi Young Lee ◽  
Chang Bo Oh

In this study, the effects of discharge area and atomizing gas type in a twin-fluid atomizer on heptane pool fire-extinguishing performance were investigated under the heat release rate conditions of 1.17 and 5.23 kW in an enclosed chamber. Large and small full cone twin-fluid atomizers were prepared. Nitrogen and air were used as atomizing gases. With respect to the droplet size of water mist, as the water and air flow rates decreased and increased, respectively, the Sauter mean diameter (SMD) of the water mist decreased. The SMD of large and small atomizers were in the range of approximately 12–60 and 12–49 μm, respectively. With respect to the discharge area effect, the small atomizer exhibited a shorter extinguishing time, lower peak surface temperature, and higher minimum oxygen concentration than the large atomizer. Furthermore, it was observed that the effect of the discharge area on fire-extinguishing performance is dominant under certain flow rate conditions. With respect to the atomizing gas type effect, nitrogen and air appeared to exhibit nearly similar extinguishing times, peak surface temperatures, and minimum oxygen concentrations under most flow rate conditions. Based on the present and previous studies, it was revealed that the effect of atomizing gas type on fire-extinguishing performance is dependent on the relative positions of the discharged flow and fire source.


Sign in / Sign up

Export Citation Format

Share Document