scholarly journals Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate) (PET) Homopolymers, an Isothermal Crystallization Analysis

Polymers ◽  
2014 ◽  
Vol 6 (2) ◽  
pp. 583-600 ◽  
Author(s):  
Leonardo Baldenegro-Perez ◽  
Damaso Navarro-Rodriguez ◽  
Francisco Medellin-Rodriguez ◽  
Benjamin Hsiao ◽  
Carlos Avila-Orta ◽  
...  
2013 ◽  
Vol 773 ◽  
pp. 530-533
Author(s):  
Chen Liu ◽  
Xiang Hui Lu ◽  
Xue Qi ◽  
Peng Li

The melting and recrystallization behavior of Poly(ethylene terephthalate) (PET)/ Attapulgite(At)nanocomposites after isothermal crystallization from the melt was studied by Step-scan differential scanning calorimetry (SDSC). The influence of At contents, crystallization temperature and crystallization time on the melting process were examined. Two melting endotherms(in the SDSC CP.A curves, reversible part) and one recrystallization exotherm (in the SDSC CP.IsoK curves, irreversible part)of PET/At nanocomposites after isothermal crystallization were observed during the melt process. This ascribes to the melting-recrystallization mechanism .The low temperature endotherm attributes to the melting of primary crystal formed during the isothermal treating and the high temperature endotherm resulting from the melting of recrystallization materials. The reason why more recrystallization happened with the increase of At content was given and the process of recrystallization was described in detail. The effects of crystal perfection and recrystallization were minimized by increasing of crystallization temperature and time.


2009 ◽  
Vol 87-88 ◽  
pp. 69-73
Author(s):  
Chen Liu ◽  
Kang Zheng ◽  
Xia Yin Yao ◽  
Xian Zhang ◽  
Xiang Lan Liu ◽  
...  

The melting and recrystallization behavior of Poly(ethylene terephthalate) (PET)/SiO2 nanocomposites after isothermal crystallization from the melt was studied by Step-scan differential scanning calorimetry (SDSC). The influence of SiO2 contents, crystallization temperature and crystallization time on the melting process were examined. Two melting endotherms(in the SDSC CP.A curves, reversible part) and one recrystallization exotherm (in the SDSC CP.IsoK curves, irreversible part)of PET/SiO2 nanocomposites after isothermal crystallization were observed during the melt process. This ascribes to the melting-recrystallization mechanism .The low temperature endotherm attributes to the melting of primary crystal formed during the isothermal treating and the high temperature endotherm resulting from the melting of recrystallization materials. The reason why more recrystallization happened with the increase of SiO2 content was given and the process of recrystallization was described in detail. The effects of crystal perfection and recrystallization were minimized by increasing of crystallization temperature and time.


1997 ◽  
Vol 67 (9) ◽  
pp. 684-694 ◽  
Author(s):  
J. Radhakrishnan ◽  
Takeshi Kikutani ◽  
Norimasa Okui

Sheath-core bicomponent spinning of high molecular weight poly (ethylene terephthalate) (hmpet, IV = 1.02 dl/g) and low molecular weight pet (lmpet, IV = 0.65 dl/g) is done at a take-up velocity range of 1 to 7 km/min. The structures of the individual components in the as-spun bicomponent fibers are characterized. Orientation and orientation-induced crystallization of the hmpet component are enhanced, while those of the lmpet component are suppressed in comparison to corresponding single component spinning. Numerical simulation with the Newtonian model shows that elongational stress in the hmpet component is enhanced and that of the lmpet decreases during high-speed bicomponent spinning. The difference in elongational viscosity is the main factor influencing the mutual interaction between hmpet and lmpet, which in turn affect spinline dynamics, solidification temperature, and structural development in high-speed bicomponent spinning. Simulation with an upper-convected Maxwell model shows that considerable stress relaxation can occur in the lmpet component if the hmpet component solidifies before lmpet. A mechanism for structural development is also proposed, based on the simulation results and structural characterization data.


Polymer ◽  
1997 ◽  
Vol 38 (24) ◽  
pp. 6079-6081 ◽  
Author(s):  
Kwan Han Yoon ◽  
Sang Cheol Lee ◽  
Il Hyun Park ◽  
Hyang Mok Lee ◽  
O.Ok Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document