scholarly journals Effect of the Statistical Nature of Fiber Strength on the Predictability of Tensile Properties of Polymer Composites Reinforced with Bamboo Fibers: Comparison of Linear- and Power-Law Weibull Models

Polymers ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 24 ◽  
Author(s):  
Xue Li ◽  
Fang Wang
2017 ◽  
Vol 41 (8) ◽  
pp. 1040-1050 ◽  
Author(s):  
T. Bhat ◽  
E. Kandare ◽  
A. G. Gibson ◽  
P. Di Modica ◽  
A. P. Mouritz

2020 ◽  
Vol 2 (1) ◽  
pp. 28-35
Author(s):  
Rokki Manurung ◽  
Sutan Simanjuntak ◽  
Jesayas Sembiring ◽  
Richard A.M. Napitupulu ◽  
Suriady Sihombing

Composites are materials which are mixed with one or more different and heterogeneous reinforcement. Matrix materials can generally be polymers, ceramics and metals. The matrix in the composite serves to distribute the load into all reinforcing material. Matrix properties are usually ductile. The reinforcing material in the composite has the role of holding the load received by the composite material. The nature of the reinforcing material is usually rigid and tough. Strengthening materials commonly used so far are carbon fiber, glass fiber, ceramics. The use of natural fibers as a type of fiber that has advantages began to be applied as a reinforcing material in polymer composites. This study seeks to see the effect of the use of bamboo natural fibers in polyester resin matrix on the strength of polymer composites with random and straight lengthwise fiber variations. From the tensile test results it can be seen that bamboo fibers can increase the strength of polymer composites made from polyester resin and the position of the longitudinal fibers gives a significantly more strength increase than random fibers.


2003 ◽  
Vol 22 (11) ◽  
pp. 1029-1034 ◽  
Author(s):  
A. Varada Rajulu ◽  
L. Ganga Devi ◽  
G. Babu Rao ◽  
R. Lakshminarayana Reddy

2013 ◽  
Vol 795 ◽  
pp. 360-366 ◽  
Author(s):  
Nurul Faiizin Abdul Aziz ◽  
Ibrahim Azmi ◽  
Zakiah Ahmad ◽  
Rozana Mohd Dahan

The use of natural fibers at high percentages of loading in thermoplastic composites for the production of sustainable and green materials in consumer goods, furniture, automotive industry and construction industry is emerging. Several studies have been conducted by many researchers to improve the mechanical properties of the fibers and the fiber-matrix interface for better bonding and load transfer especially when high fiber loading is used. The natural fiber hydrophilic properties make the poor interface and poor resistance to moisture absorption when used to reinforce hydrophobic matrices. Therefore, this study investigates the effects of different surface treatment namely magnesium chloride (MgCl2) and sodium hydroxide (NaOH) on the properties of kenaf fiber for different molarities. Morphology using scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy and tensile properties of kenaf fibers after different surface treatment are evaluated. Results showed that the treatment on kenaf fibers has removed the hydroxyl group in cellulose and increase the surface roughness which resulted in the improvement of the tensile properties of kenaf fibers as compared to untreated kenaf fibers.


2012 ◽  
Vol 476-478 ◽  
pp. 1930-1933 ◽  
Author(s):  
Jie Gao ◽  
Ge Wang ◽  
Hai Tao Cheng ◽  
Sheldon Q. Shi

The objectives of the current study involve in situ depositing treatments of calcium carbonate particles onto bamboo fibers through the ionic reaction of sodium carbonate and calcium chloride aqueous solution at varied bath temperatures, and their impacts on surface features, wettability and tensile properties of single bamboo fibers. Field emission scanning electron microscopy was employed to characterize surface morphology of fibers. The wettability of bamboo fibers was evaluated by optical contact angle measurement instrument. The results show that nanoparticles and submicron particles grew into the wrinkles and micropores of fibers, the size, morphology and adsorbance of which were distinctively varied at different bath temperatures. The highest calcium carbonate adsorbance (2.34%) was obtained at 25°C. Besides, the mean values of contact angles increased and the variations within group were reduced as the loading percentage of particles rose, which might be due to reduced hydrophilic groups after coatings of calcium carbonate particles. The treatments were approved to enhance tensile properties of single bamboo fibers, comparing to the average tensile strengh and modulus of elasticity of the untreated, those of the treated bamboo fibers with the biggest calcium carbonate loading were higher by 30.50% and 32.71% respectively. It’s proved that the precipitating treatment is a useful method to densify and hydrophobize bamboo fibers and smooth out cell wall defects. What’s more, it provide explanations for improvements of physical and mechanical properties of paper and fiber reinforced plastic composites filled with inorganic nanoparticles.


2016 ◽  
Vol 39 (4) ◽  
pp. 1172-1191 ◽  
Author(s):  
Gregory A. Campbell ◽  
Michael E. Zak ◽  
Jayaprakash S. Radhakrishnan

Sign in / Sign up

Export Citation Format

Share Document