scholarly journals Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide) Interpenetrating Polymer Network Hydrogel

Polymers ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 110 ◽  
Author(s):  
Boxiang Wang ◽  
Xiaolin Wu ◽  
Jia Li ◽  
Xu Hao ◽  
Jie Lin ◽  
...  
2009 ◽  
Vol 47 (19) ◽  
pp. 4950-4962 ◽  
Author(s):  
Thimma Reddy Thatiparti ◽  
Arihiro Kano ◽  
Atsushi Maruyama ◽  
Atsushi Takahara

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 818 ◽  
Author(s):  
Yifan Cui ◽  
Zijing Xing ◽  
Jun Yan ◽  
Yanhua Lu ◽  
Xiaoqing Xiong ◽  
...  

Poly(N-isopropylacrylamide) (PNIPAAm), sericin (SS), and silver nitrate were combined to prepare an interpenetrating network (IPN) hydrogel having dual functions of temperature sensitivity and antibacterial properties. The structure and size of AgNPs in such an IPN hydrogel were characterized by the Fourier Transform Infrared spectrum (FT-IR), X-ray powder diffraction (XRD) and Transmission Electron Microscope (TEM), and the thermal properties of the IPN hydrogel were characterized by Differential Scanning Calorimetry (DSC). Based on XRD patterns, Ag+ was successfully reduced to Ag0 by SS. It was observed by TEM that the particle size of silver particles was lower than 100 nm. The glass transition temperature (Tg) of IPN hydrogel was better than that of the PNIPAAm/AgNPs hydrogels, and lower critical solution temperature (LCST) values of the IPN hydrogel were obtained by DSC i.e. 31 °C. The thermal stability of the IPN hydrogel was successfully determined by the TGA. This IPN hydrogel was then used to modify the cotton fabrics by the “impregnation” method using glutaraldehyde (GA) as the cross-linking agent. The structures and properties of IPN hydrogel modified cotton fabric were characterized by scanning electron microscopy (SEM), FT-IR, and the thermogravimetry analysis (TGA). The results show that NIPAAm was successfully polymerized into PNIPAAm, and that there were neglected new groups in the hydrogel IPN. The IPN hydrogel was then successfully grafted onto cotton fabrics. SEM observations showed that the IPN hydrogel formed a membrane structure between the fibers, and improved the compactness of the fibers. At the temperature close to LCST (≈31 °C), the entire system was easily able to absorb water molecules. However, the hydrophilicity tended to decrease when the temperature was higher or lower than the LCST. The antibacterial rates of the modified cotton fabric against S. aureus and E. coli were as high as 99%.


2020 ◽  
Vol 90 (23-24) ◽  
pp. 2622-2638
Author(s):  
Jinru Liu ◽  
Hualing He ◽  
Zhicai Yu ◽  
Abhijeet Suryawanshi ◽  
Yongquan Li ◽  
...  

Stimuli-responsive polymers applied to traditional textiles have received widespread attention. In this work, a new type of polymer-modified polyester fabric was prepared with interpenetrating polymer network (IPN) hydrogel. The IPN hydrogel comprised of poly (N-isopropylacrylamide) (PNIPAAm), silk sericin (SS), and silver nanoparticles (Ag NPs). The presence of the IPN hydrogel on the surface of fibers can change the wettability of polyester fabric, in response to temperature. The thermal behavior of IPN hydrogel was characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). DSC results indicated that the IPN hydrogel exhibits temperature-responsive behavior and the lower critical solution temperature (LCST) was around 32.9℃. The decomposition temperature of modified polyester fabric (400.5℃) was better than the original polyester fabric (335℃). TG results indicated that the polymer-modified fabric possessed higher thermal stability than the original polyester fabrics. The thermo-physiological comfort of modified polyester fabric was characterized by water contact angle and vertical wicking test. Above the LCST, the wettability of the polymer-modified polyester fabric would decrease because of the volume phase transition of IPN hydrogel. Moreover, the antibacterial activity of the modified temperature-sensitive fabric against Staphylococcus aureus and Escherichia coli was also investigated, and the antibacterial activity for both microorganisms exceeded 95%. This study provided a feasible route to fabricate the temperature-responsive textile with great antibacterial performance.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradeep Kumar ◽  
Viness Pillay ◽  
Yahya E. Choonara

AbstractThree-dimensional porous scaffolds are widely employed in tissue engineering and regenerative medicine for their ability to carry bioactives and cells; and for their platform properties to allow for bridging-the-gap within an injured tissue. This study describes the effect of various methoxypolyethylene glycol (mPEG) derivatives (mPEG (-OCH3 functionality), mPEG-aldehyde (mPEG-CHO) and mPEG-acetic acid (mPEG-COOH)) on the morphology and physical properties of chemically crosslinked, semi-interpenetrating polymer network (IPN), chitosan (CHT)/mPEG blend cryosponges. Physicochemical and molecular characterization revealed that the –CHO and –COOH functional groups in mPEG derivatives interacted with the –NH2 functionality of the chitosan chain. The distinguishing feature of the cryosponges was their unique morphological features such as fringe thread-, pebble-, curved quartz crystal-, crystal flower-; and canyon-like structures. The morphological data was well corroborated by the image processing data and physisorption curves corresponding to Type II isotherm with open hysteresis loops. Functionalization of mPEG had no evident influence on the macro-mechanical properties of the cryosponges but increased the matrix strength as determined by the rheomechanical analyses. The cryosponges were able to deliver bioactives (dexamethasone and curcumin) over 10 days, showed varied matrix degradation profiles, and supported neuronal cells on the matrix surface. In addition, in silico simulations confirmed the compatibility and molecular stability of the CHT/mPEG blend compositions. In conclusion, the study confirmed that significant morphological variations may be induced by minimal functionalization and crosslinking of biomaterials.


Sign in / Sign up

Export Citation Format

Share Document