scholarly journals Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Maja Čolnik ◽  
Darja Pečar ◽  
Željko Knez ◽  
Andreja Goršek ◽  
Mojca Škerget

Kinetics of hydrothermal degradation of colorless polyethylene terephthalate (PET) waste was studied at two temperatures (300 °C and 350 °C) and reaction times from 1 to 240 min. PET waste was decomposed in subcritical water (SubCW) by hydrolysis to terephthalic acid (TPA) and ethylene glycol (EG) as the main products. This was followed by further degradation of TPA to benzoic acid by decarboxylation and degradation of EG to acetaldehyde by a dehydration reaction. Furthermore, by-products such as isophthalic acid (IPA) and 1,4-dioxane were also detected in the reaction mixture. Taking into account these most represented products, a simplified kinetic model describing the degradation of PET has been developed, considering irreversible consecutive reactions that take place as parallel in reaction mixture. The reaction rate constants (k1-k6) for the individual reactions were calculated and it was observed that all reactions follow first-order kinetics.

Holzforschung ◽  
2009 ◽  
Vol 63 (3) ◽  
Author(s):  
Ashutosh Mittal ◽  
Siddharth G. Chatterjee ◽  
Gary M. Scott ◽  
Thomas E. Amidon

Abstract The objective of this work was to study the kinetics of hemicelluloses extraction during hydrothermal pretreatment of sugar maple wood meal. Pretreatment was conducted in a batch reactor at 145–185°C with reaction times up to 8 h and with liquor to solid ratio of 20:1. Under these conditions, hemicelluloses were selectively solubilized and little degradation (approximately 6–9% of the initial amount) of cellulose and lignin was observed. A kinetic model was developed. It was supposed that there are no diffusion limitations and that the reaction rate constants have first-order kinetics with Arrhenius-type temperature dependence. The model proposes the formation of xylose directly from wood xylan as well as from xylooligomers formed in the liquid phase by the hydrolysis of xylan. The model is able to correlate satisfactorily experimentally measured yields of residual xylan, xylooligomers, xylose, and furfural obtained during the pretreatment.


Author(s):  
ARGELIA M. L. LENARDÓN ◽  
PATRICIA M. DE LA SIERRA ◽  
FERNANDA MARINO

Estudou-se a cinética de degradação da mistura dos isômeros alfa e beta Endosulfan em diferentes condições de trabalho. Os compostos foram adicionados em água ultrapura, água do rio, água de rio filtrada e água ultrapura com sais (salinidade similar à agua do rio utilizada). As condições de degradação escolhidas foram: escuridão e duas temperaturas (14+1 ºC e 26+1 ºC). As amostragens foram programadas de modo a se obter dados periódicos mais freqüentes no início da experiência e posteriormente mais espaçados até o seu final (230 dias). As amostras foram submetidas à microextração e analisadas por cromatografia em fase gasosa com detector de Ni63 e coluna Megabore DB-5. A degradação foi descrita de acordo com a cinética de primeira ordem, determinando-se os tempos de meia vida (t1/2) e as energias de ativação (Ea). Os dados obtidos evidenciaram que a temperatura é o fator preponderante, sendo possível deduzir que o alfaendosulfan, exceto para água ultrapura (AU), é mais influenciado pela temperatura do que o beta-endosulfan. O segundo efeito mais importante refere-se ao tipo de água utilizada como matriz, devido à influência da salinidade. PERSISTANCE OF ENDOSULFAN IN STATIC AQUEOUS MEDIUM Abstract Degradation kinetics of a mixture of alpha- and beta-Endosulfan isomers was studied under different conditions. The compounds were spiked in ultrapure water, river water, filtered water and ultrapure water with salts (similar salinity condition to that of the river water used). The degradation conditions chosen were: darkness, two temperatures (14+1 ºC e 26+1 ºC). Samplings were programmed in order to obtain more frequent periodical data in the beginning of the experience and after more spaced until its end (230 days). The samples were submitted to microextraction and then analyzed by gas chromatography through a Ni63 detector equipped with a Megabore DB-5 column. Degradation was described using first-order kinetics to determine half-life times (t1/2) and activation energies (Ea). The data obtained evidenced that temperature is the predominant factor, it can possibly be inferred that alfa-endosulfan is much more influenced than beta-endosulfan except for ultrapure water (UW). The second important effect is the water type used as matrix, due to the influence of salinity.


1987 ◽  
Vol 65 (9) ◽  
pp. 2263-2267 ◽  
Author(s):  
Przemyslaw Sanecki ◽  
Edward Rokaszewski

A continuous polarographic method of recording instantaneous concentrations of —SO2Cl groups in an aqueous acetic acid system containing CH3CO2Na has been elaborated. Ten model monosulfonyl chlorides underwent hydrolysis according to pseudo-first order kinetics (20% H2O, 80% v.v. CH3CO2H, 0.5 mol × dm−3 CH3CO2Na). Plots of hydrolysis for seven disulfonyl dichlorides with different number of —CH3 groups have been determined. Pseudo-first order rate constants for two consecutive reactions of hydrolysis (k1 and k2) have been computed and the influence of —SO2Cl and [Formula: see text] groups on the reactivity of the second group —SO2Cl has been discussed. The mechanism of nucleophilic substitution has also been discussed.


1980 ◽  
Vol 45 (4) ◽  
pp. 1197-1220 ◽  
Author(s):  
Jaromír Jakeš

The reaction kinetics has been investigated of a general monomolecular reaction between n components, where reactions between some components are reversible and between others irreversible. The reacting components may be divided into groups so that all the components inside one group may change reversibly into each other, while reactions between components of different groups are irreversible. The reaction kinetics for each reversible group may be found similarly to the case where all the reactions are reversible; solutions for the individual reversible groups may be used to obtain solution for the whole system. A solution was also found to a difficult case in which matrices have multiple eigenvalues for irreversible consecutive reactions, namely, for a general case of degeneracy. Formulas are given for the calculation of derivatives of concentrations of the individual components with respect to parameters. The equations thus derived were applied to the reaction kinetics of a polymeranalogous reaction (e.g., hydrolysis of polyacrylonitrile).


2018 ◽  
Vol 17 (2) ◽  
pp. 167-173
Author(s):  
Md Mokaram Hossain ◽  
Reza Ul Jalil ◽  
Mohammad A Rashid

Ramosetron hydrochloride is the hydrochloride salt of ramosetron, a selective serotonin (5-HT3) receptor antagonist with potential antiemetic activity. Upon administration, ramosetron selectively binds to and blocks the activity of 5-HT subtype 3 (5-HT3) receptors located in the vagus nerve terminal and the vomiting center of central nervous system (CNS), suppressing chemotherapy-induced nausea and vomiting. Degradation of Ramosetron HCl was conducted with 0.1N NaOH at 60°C, 70°C and 80°C to study the reaction kinetics. The reaction rate constants (k) for degradation at 60°C, 70°C and 80°C were -2.2680 molL-1s-1 , -3.3714 molL-1s-1 and -5.3686 molL-1s-1 for zero order and -1.05 x 10-2s-1, -1.60 x 10-2s-1 and -2.70 x 10-2s-1 for first order kinetics, respectively. The activation energy of Ramosetron HCl was found as 10.05 kcalmol-1 by using Arrhenius equation. Dhaka Univ. J. Pharm. Sci. 17(2): 167-173, 2018 (December)


Author(s):  
Nuorn Choothong ◽  
Seiichi Kawahara

ABSTRACT The mechanism of bromination of NR was studied by solution-state 1H-NMR spectroscopy. The bromination of NR was carried out at 20–50 °C with N-bromosuccinimide as the brominating agent, and the kinetic study of bromination was conducted under nitrogen atmosphere at 30–50 °C for various reaction times. The influence of bromine atom substituent on the bromination rate constant (k) also was investigated. Bromine atom content was found to be dependent upon the reaction time, indicating first-order kinetics. The activation energy of bromination of NR, calculated from the reaction rate constants, was 19.3, 5.5, and 5.8 kJ mol−1 for bromine atom linked to carbon atom with methylene proton and methylene protons, respectively.


2012 ◽  
Vol 455-456 ◽  
pp. 533-539
Author(s):  
Sheng Jian Zhang ◽  
Ying Xian Zhao

The hydrocracking of a pentane-insoluble asphaltene over NiMo/γ-Al2O3 was investigated in a microbatch reactor at 703 K. The cracking kinetics of the asphaltene was analyzed on a total molar basis. The first-order kinetics fits the experimental data in reaction times ≤30 min adequately, to give the rate constant of 0.0498 min-1. For reaction times over 30 min, however, secondary reactions such as coke formation could become significant. The formation probability of gas products decreases from the initial value of circa 0.8 to a stable level of 0.6 in 30 min, and the formation probability of liquid products increases from 0.2 to 0.4 accordingly.


Author(s):  
M.A. Egyan ◽  

The article shows studies characterizing the quality of the squeeze: the mechanical composition of the squeeze is determined, the structural moisture of each component is determined, the sugar content in the formed process of sedimentation of the juice and its acidity are determined refractometrically. The kinetics of anthocyanins extraction was determined in two ways, the solids content in the extract was calculated, and the reaction rate constants of the extraction process and the efficiency coefficient of ultrasonic amplification of the extraction process speed were calculated.


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH < 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


1983 ◽  
Vol 48 (11) ◽  
pp. 3279-3286
Author(s):  
Slavko Hudeček ◽  
Miloslav Bohdanecký ◽  
Ivana Hudečková ◽  
Pavel Špaček ◽  
Pavel Čefelín

The reaction between hexamethylenediisocyanate and 1-pentanol in toluene was studied by means of reversed-phase liquid chromatography. By employing this method, it was possible to determine all components of the reaction mixture including both products, i.e. N-(6-isocyanate hexyl)pentylcarbamate and N,N'-bis(pentyloxycarbonyl)hexamethylenediamine. Relations for the calculation of kinetic constants were derived assuming a competitive consecutive second-order reaction. It was demonstrated that the reaction involved in this case is indeed a second-order reaction, and the rate constants of the first and second consecutive reactions were determined.


Sign in / Sign up

Export Citation Format

Share Document