scholarly journals Computational Molecular Modeling of Transport Processes in Nanoporous Membranes

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 124 ◽  
Author(s):  
Kevin Hinkle ◽  
Xiaoyu Wang ◽  
Xuehong Gu ◽  
Cynthia Jameson ◽  
Sohail Murad

In this report we have discussed the important role of molecular modeling, especially the use of the molecular dynamics method, in investigating transport processes in nanoporous materials such as membranes. With the availability of high performance computers, molecular modeling can now be used to study rather complex systems at a fraction of the cost or time requirements of experimental studies. Molecular modeling techniques have the advantage of being able to access spatial and temporal resolution which are difficult to reach in experimental studies. For example, sub-Angstrom level spatial resolution is very accessible as is sub-femtosecond temporal resolution. Due to these advantages, simulation can play two important roles: Firstly because of the increased spatial and temporal resolution, it can help understand phenomena not well understood. As an example, we discuss the study of reverse osmosis processes. Before simulations were used it was thought the separation of water from salt was purely a coulombic phenomenon. However, by applying molecular simulation techniques, it was clearly demonstrated that the solvation of ions made the separation in effect a steric separation and it was the flux which was strongly affected by the coulombic interactions between water and the membrane surface. Additionally, because of their relatively low cost and quick turnaround (by using multiple processor systems now increasingly available) simulations can be a useful screening tool to identify membranes for a potential application. To this end, we have described our studies in determining the most suitable zeolite membrane for redox flow battery applications. As computing facilities become more widely available and new computational methods are developed, we believe molecular modeling will become a key tool in the study of transport processes in nanoporous materials.

Author(s):  
Kevin R. Hinkle ◽  
Xiaoyu Wang ◽  
Xuehong Gu ◽  
Cynthia J. Jameson ◽  
Sohail Murad

In this report we have discussed the important role of molecular modeling, especially the use of the molecular dynamics method, in investigating transport processes in nanoporous materials such as membranes. With the availability of high performance computers, molecular modeling can now be used to study rather complex systems at a fraction of the cost or time requirements of experimental studies. Molecular modeling techniques have the advantage of being able to access spatial and temporal resolution which are difficult to reach in experimental studies. For example, sub-Angstrom level spatial resolution is very accessible as is sub-femtosecond temporal resolution. Due to these advantages, simulation can play two important roles: Firstly because of the increased spatial and temporal resolution, it can help understand phenomena not well understood. As an example, we discuss the study of reverse osmosis processes. Before simulations were used it was thought the separation of water from salt was purely a coulombic phenomenon. However, by applying molecular simulation techniques, it was clearly demonstrated that the solvation of ions made the separation in effect a steric separation and it was the flux which was strongly affected by the coulombic interactions between water and the membrane surface. Additionally, because of their relatively low cost and quick turnaround (by using multiple processor systems now increasingly available) simulations can be a useful screening tool to identify membranes for a potential application. To this end, we have described our studies in determining the most suitable zeolite membrane for redox flow battery applications. As computing facilities become more widely available and new computational methods are developed, we believe molecular modeling will become a key tool in the study of transport processes in nanoporous materials.


2019 ◽  
Vol 9 (3) ◽  
pp. 374 ◽  
Author(s):  
Mohsin Zafar ◽  
Karl Kratkiewicz ◽  
Rayyan Manwar ◽  
Mohammad Avanaki

A low-cost Photoacoustic Computed Tomography (PACT) system consisting of 16 single-element transducers has been developed. Our design proposes a fast rotating mechanism of 360o rotation around the imaging target, generating comparable images to those produced by large-number-element (e.g., 512, 1024, etc.) ring-array PACT systems. The 2D images with a temporal resolution of 1.5 s and a spatial resolution of 240 µm were achieved. The performance of the proposed system was evaluated by imaging complex phantom. The purpose of the proposed development is to provide researchers a low-cost alternative 2D photoacoustic computed tomography system with comparable resolution to the current high performance expensive ring-array PACT systems.


2021 ◽  
Vol 624 ◽  
pp. 119110
Author(s):  
Nha Minh Nguyen ◽  
Quang Thanh Le ◽  
Duy Phuc-Hoang Nguyen ◽  
Tung Ngoc Nguyen ◽  
Thanh Tu Le ◽  
...  

Author(s):  
Rossella Surace ◽  
Vincenzo Bellantone ◽  
Irene Fassi

Abstract Currently, the increasing interest in the study of Polylactic acid (PLA) polymer has been motivated by the potential of such material for consumer and biomedical applications. PLA is a thermoplastic polymer, biodegradable, compostable and deriving from renewable natural sources as starch and sugar. Injection molding is the most widely used process for thermoplastic micro-featured parts for to its capacity to manufacture low-cost and high repeatable micro-parts. The use of PLA for injection molded micro components is still not well stabilized due to the slow crystallization kinetics, not suitable for high performance applications. In this work, preliminary experimental studies have been performed to analyze the filling ability of PLA in a meso and a micro parts using different molding conditions to evaluate process parameters influence. The experiments results are discussed in the paper and show that injection molding proved to be suitable for meso-micro PLA product manufacturing.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document