scholarly journals CFD Optimization Process of a Lateral Inlet/Outlet Diffusion Part of a Pumped Hydroelectric Storage Based on Optimal Surrogate Models

Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 204 ◽  
Author(s):  
Gao ◽  
Zhu ◽  
Zhang ◽  
Sun ◽  
Qin ◽  
...  

The lateral inlet/outlet plays a critical role in the connecting tunnels of a water delivery system in a pumped hydroelectric storage (PHES). Therefore, the shape of the inlet/outlet was improved through computational fluid dynamics (CFD) optimization based on optimal surrogate models. The CFD method applied in this paper was validated by a physical experiment that was carefully designed to meet bidirectional flow requirements. To determine a good compromise between the generation and pump mode, reasonable weights were defined to better evaluate the overall performance. In order to find suitable surrogate models to improve the optimization process, the best suited surrogate models were identified by an optimal model selection method. The optimal configurations of the surrogate model for the head loss and the velocity distribution coefficient were the Kriging model with a Gaussian kernel and the Kriging model with an Exponential kernel, respectively. Finally, a multi-objective surrogate-based optimization method was used to determine the optimum design. The overall head loss coefficient and velocity distribution coefficients were 0.248 and 1.416. Compared with the original shape, the coefficients decrease by 6.42% and 40.28%, respectively. The methods and findings of this work may provide practical guidelines for designers and researchers.

2021 ◽  
pp. 146808742110652
Author(s):  
Jian Tang ◽  
Anuj Pal ◽  
Wen Dai ◽  
Chad Archer ◽  
James Yi ◽  
...  

Engine knock is an undesirable combustion that could damage the engine mechanically. On the other hand, it is often desired to operate the engine close to its borderline knock limit to optimize combustion efficiency. Traditionally, borderline knock limit is detected by sweeping tests of related control parameters for the worst knock, which is expensive and time consuming, and also, the detected borderline knock limit is often used as a feedforward control without considering its stochastic characteristics without compensating current engine operational condition and type of fuel used. In this paper, stochastic Bayesian optimization method is used to obtain a tradeoff between stochastic knock intensity and fuel economy. The log-nominal distribution of knock intensity signal is converted to Gaussian one using a proposed map to satisfy the assumption for Kriging model development. Both deterministic and stochastic Kriging surrogate models are developed based on test data using the Bayesian iterative optimization process. This study focuses on optimizing two competing objectives, knock intensity and indicated specific fuel consumption using two control parameters: spark and intake valve timings. Test results at two different operation conditions show that the proposed learning algorithm not only reduces required time and cost for predicting knock borderline but also provides control parameters, based on trained surrogate models and the corresponding Pareto front, with the best fuel economy possible.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 163
Author(s):  
Yaru Li ◽  
Yulai Zhang ◽  
Yongping Cai

The selection of the hyper-parameters plays a critical role in the task of prediction based on the recurrent neural networks (RNN). Traditionally, the hyper-parameters of the machine learning models are selected by simulations as well as human experiences. In recent years, multiple algorithms based on Bayesian optimization (BO) are developed to determine the optimal values of the hyper-parameters. In most of these methods, gradients are required to be calculated. In this work, the particle swarm optimization (PSO) is used under the BO framework to develop a new method for hyper-parameter optimization. The proposed algorithm (BO-PSO) is free of gradient calculation and the particles can be optimized in parallel naturally. So the computational complexity can be effectively reduced which means better hyper-parameters can be obtained under the same amount of calculation. Experiments are done on real world power load data,where the proposed method outperforms the existing state-of-the-art algorithms,BO with limit-BFGS-bound (BO-L-BFGS-B) and BO with truncated-newton (BO-TNC),in terms of the prediction accuracy. The errors of the prediction result in different models show that BO-PSO is an effective hyper-parameter optimization method.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 149
Author(s):  
Yaohui Li ◽  
Jingfang Shen ◽  
Ziliang Cai ◽  
Yizhong Wu ◽  
Shuting Wang

The kriging optimization method that can only obtain one sampling point per cycle has encountered a bottleneck in practical engineering applications. How to find a suitable optimization method to generate multiple sampling points at a time while improving the accuracy of convergence and reducing the number of expensive evaluations has been a wide concern. For this reason, a kriging-assisted multi-objective constrained global optimization (KMCGO) method has been proposed. The sample data obtained from the expensive function evaluation is first used to construct or update the kriging model in each cycle. Then, kriging-based estimated target, RMSE (root mean square error), and feasibility probability are used to form three objectives, which are optimized to generate the Pareto frontier set through multi-objective optimization. Finally, the sample data from the Pareto frontier set is further screened to obtain more promising and valuable sampling points. The test results of five benchmark functions, four design problems, and a fuel economy simulation optimization prove the effectiveness of the proposed algorithm.


Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


Author(s):  
Woo-Kyun Jung ◽  
Young-Chul Park ◽  
Jae-Won Lee ◽  
Eun Suk Suh

AbstractImplementing digital transformation in the garment industry is very difficult, owing to its labor-intensive structural characteristics. Further, the productivity of a garment production system is considerably influenced by a combination of processes and operators. This study proposes a simulation-based hybrid optimization method to maximize the productivity of a garment production line. The simulation reflects the actual site characteristics, i.e., process and operator level indices, and the optimization process reflects constraints based on expert knowledge. The optimization process derives an optimal operator sequence through a genetic algorithm (GA) and sequentially removes bottlenecks through workload analysis based on the results. The proposed simulation optimization (SO) method improved productivity by ∼67.4%, which is 52.3% higher than that obtained by the existing meta-heuristic algorithm. The correlation between workload and production was verified by analyzing the workload change trends. This study holds significance because it presents a new simulation-based optimization model that further applies the workload distribution method by eliminating bottlenecks and digitizing garment production lines.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5332
Author(s):  
Carlos A. Duchanoy ◽  
Hiram Calvo ◽  
Marco A. Moreno-Armendáriz

Surrogate Modeling (SM) is often used to reduce the computational burden of time-consuming system simulations. However, continuous advances in Artificial Intelligence (AI) and the spread of embedded sensors have led to the creation of Digital Twins (DT), Design Mining (DM), and Soft Sensors (SS). These methodologies represent a new challenge for the generation of surrogate models since they require the implementation of elaborated artificial intelligence algorithms and minimize the number of physical experiments measured. To reduce the assessment of a physical system, several existing adaptive sequential sampling methodologies have been developed; however, they are limited in most part to the Kriging models and Kriging-model-based Monte Carlo Simulation. In this paper, we integrate a distinct adaptive sampling methodology to an automated machine learning methodology (AutoML) to help in the process of model selection while minimizing the system evaluation and maximizing the system performance for surrogate models based on artificial intelligence algorithms. In each iteration, this framework uses a grid search algorithm to determine the best candidate models and perform a leave-one-out cross-validation to calculate the performance of each sampled point. A Voronoi diagram is applied to partition the sampling region into some local cells, and the Voronoi vertexes are considered as new candidate points. The performance of the sample points is used to estimate the accuracy of the model for a set of candidate points to select those that will improve more the model’s accuracy. Then, the number of candidate models is reduced. Finally, the performance of the framework is tested using two examples to demonstrate the applicability of the proposed method.


2020 ◽  
Vol 1 ◽  
Author(s):  
Changmin Yu ◽  
Marko Seslija ◽  
George Brownbridge ◽  
Sebastian Mosbach ◽  
Markus Kraft ◽  
...  

Abstract We apply deep kernel learning (DKL), which can be viewed as a combination of a Gaussian process (GP) and a deep neural network (DNN), to compression ignition engine emissions and compare its performance to a selection of other surrogate models on the same dataset. Surrogate models are a class of computationally cheaper alternatives to physics-based models. High-dimensional model representation (HDMR) is also briefly discussed and acts as a benchmark model for comparison. We apply the considered methods to a dataset, which was obtained from a compression ignition engine and includes as outputs soot and NO x emissions as functions of 14 engine operating condition variables. We combine a quasi-random global search with a conventional grid-optimization method in order to identify suitable values for several DKL hyperparameters, which include network architecture, kernel, and learning parameters. The performance of DKL, HDMR, plain GPs, and plain DNNs is compared in terms of the root mean squared error (RMSE) of the predictions as well as computational expense of training and evaluation. It is shown that DKL performs best in terms of RMSE in the predictions whilst maintaining the computational cost at a reasonable level, and DKL predictions are in good agreement with the experimental emissions data.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kaijian Zhu ◽  
Weiping Huang ◽  
Yuncai Wang ◽  
Wei Niu ◽  
Gongyou Wu

Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed.


2020 ◽  
Vol 37 (7) ◽  
pp. 2357-2389 ◽  
Author(s):  
Ali Kaveh ◽  
Ataollah Zaerreza

Purpose This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm. Design/methodology/approach The agents are first separated into multi-communities and the optimization process is then performed mimicking the behavior of a shepherd in nature operating on each community. Findings A new multi-community meta-heuristic optimization algorithm called a shuffled shepherd optimization algorithm is developed in this paper and applied to some attractive examples. Originality/value A new metaheuristic is presented and tested with some classic benchmark problems and some attractive structures are optimized.


2015 ◽  
Vol 783 ◽  
pp. 83-94
Author(s):  
Alberto Borboni

In this work, the optimization problem is studied for a planar cam which rotates around its axis and moves a centered translating roller follower. The proposed optimization method is a genetic algorithm. The paper deals with different design problems: the minimization of the pressure angle, the maximization of the radius of curvature and the minimization of the contact pressure. Different types of motion laws are tested to found the most suitable for the computational optimization process.


Sign in / Sign up

Export Citation Format

Share Document