scholarly journals Quantifying the Benefit of a Dynamic Performance Assessment of WWTP

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 206 ◽  
Author(s):  
Silvana Revollar ◽  
Montse Meneses ◽  
Ramón Vilanova ◽  
Pastora Vega ◽  
Mario Francisco

In this work a comprehensive analysis of the environmental impact of the operation of a wastewater treatment plant (WWTP) using different control strategies is carried out considering the dynamic evolution of some environmental indicators and average operation costs. The selected strategies are PI (proportional integral) control schemes such as dissolved oxygen control in the aerobic zone (DO control), DO control and nitrates control in the anoxic zone (DO + NO control) and regulation of ammonium control at the end of aerobic zone (Cascade SNHSP) commonly used in WWTPs to maintain the conditions that ensure the desired effluent quality in a variable influent scenario. The main novelty of the work is the integration of potential insights into environmental impact from the analysis of dynamic evolution of environmental indicators at different time scales. The consideration of annual, bimonthly and weekly temporal windows to evaluate performance indicators makes it possible to capture seasonal effects of influent disturbances and control actions on environmental costs of wastewater treatment that are unnoticed in the annual-based performance evaluation. Then, in the case of periodic events, it is possible to find solutions to improve operation by the adjustment of the control variables in specific periods of time along the operation horizon. The analysis of the annual average and dynamic profiles (weekly and bimonthly) of environmental indicators showed that ammonium-based control (Cascade SNHSP) produce the best compromise solution between environmental and operation costs compared with DO control and DO + NO control. An alternative control strategy, named SNHSP var Qcarb var, has been defined considering a sequence of changes on ammonium set-point (SNHSP) and carbon dosage (Qcarb) on different temporal windows. It is compared with DO control considering weekly and bimonthly profiles and annual average values leading to the conclusion that both strategies, Cascade SNHSP and SNHSP var Qcarb var, produce an improvement of dynamic and annual average environmental performance and operation costs, but benefits of Cascade SNHSP strategy are associated with reduction of electricity consumption and emissions to water, while SNHSP var Qcarb var strategy reduces electricity consumption, use of chemicals (reducing external carbon dosage) and operation costs.

1992 ◽  
Vol 25 (9) ◽  
pp. 85-92 ◽  
Author(s):  
I. Ozturk ◽  
T. Zambal ◽  
A. Samsunlu ◽  
E. Göknel

Metropolitan Istanbul Wastewater Treatment System contains 14 marine outfalls, seven of which include secondary stage biological treatment processes. The others have only mechanical treatment units including bar screens and grit chambers. Only one mechanical pre-treatment and marine disposal system, Yenikapi plant, has been operated since 1988 among these 14 plants and six of them are ready for construction. In this paper, the environmental impact of Yenikapi pretreatment and marine disposal system on the water quality of the Bosphorus and the Sea of Marmara has been investigated. Long term water quality measurements which were performed in pre-and post-dischange applications have been evaluated. Water quality parameters including pH, DO, BODs, TKN, P and total coliforms were measured at various sampling stations around the discharge points. A general evaluation of marine outfall systems to be constructed in the scope of Istanbul wastewater treatment project, on the water quality of the Sea of Marmara and the Bosphorus has been presented.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 429-436 ◽  
Author(s):  
L. Wang ◽  
J. Peng ◽  
B. Wang ◽  
L. Yang

An eco-system consisting of integrated ponds and constructed wetland systems is employed in Dongying City, Shandong Province for the treatment and utilization of municipal wastewater with design capacity of 100,000 m3/d. The total capital cost of this system is 680 Yuan (RMB) or US$82/m3/d, or about half that of the conventional system based on activated sludge process, and the O/M cost is 0.1 Yuan (RMB) or US$ 0.012/m3, only one fifth that of conventional treatment systems. The performance of the wastewater treatment and utilization eco-system is quite good with a final effluent COD, BOD, SS, NH3-N and TP of 45–65 mg/l, 7–32 mg/l, 12–35 mg/l, 2–13 mg/l and 0.2–1.8 mg/l respectively and the annual average removals of COD, BOD, SS, NH3-N and TP are 69.1%, 78.3%, 76.4%, 62.1% and 52.9% respectively, which is much better than that of conventional pond system or constructed wetland used separately and illustrates that the artificial and integrated eco-system is more effective and efficient than the simple natural eco-system.


2020 ◽  
Vol 5 (10) ◽  
pp. 1260-1262
Author(s):  
Stela Sefa ◽  
Tania Floqi ◽  
Julian Sefa

The wastewater treatment plant serving the city of Durres, which is the second most populous city of Albania, employs the tertiary advanced wastewater treatment method and engages in biogas production to achieve energy efficiency. In order to empirically evaluate the plant’s energy efficiency realization, the total biogas produced and converted to electricity for daily consumption was measured during a three years period (2016 - 2018). The highest electricity produced was recorded in 2016, with a daily average of 844kWh compared to 550kWh and 370kWh in 2017 and 2018, respectively. So that the plant meets proper criteria to classify as an energy-efficient entity, 30.0 percent of its electricity consumption must be derived from biogas. Converted in kWh, the plant should generate 2,975 kWh/day. Based on the biomass and energy values measured during the study period, it is concluded that electricity supplied from biogas met 6.0 percent of the plant’s energy requirements, or one fifth of the energy-efficiency target. While the plant was successful in carrying out the full waste-to-energy production process, the electricity supplied from biogas was very low and did not fulfil the plant’s self-energy requirements.


2020 ◽  
Author(s):  
Felipe Przysiada† ◽  
Diego Merks ◽  
Eduardo Silva ◽  
Alessandro Brawerman

The cost of electricity in Brazilian homes is increasingly high. This project consists of bringing a complete and easily accessible solution aiming to benefit the economy, in a much broader way, both for the end user and for the electricity generating system, which today has difficulty in meeting demand, as well as it provides a reduction in the environmental impact caused by the constant expansion of hydroelectric plants and other sources of energy. The use of this system, the Electricity Consumption Monitoring System, allows the user to have control of each equipment installed in the premises. The equipment in monitored by a device designed and built in this project. From these monitoring devices, which perform periodic measurements, it is possible to make a daily, weekly or monthly survey of the consumption of each equipment in the residence, sending alert messages, for excessive energy consumption, thus defining a user profile and even creating limitations for monthly spending. With this, the user will have the necessary resources to manage their energy consumption over the days, without having surprises at the end of the month.


2007 ◽  
Vol 56 (3) ◽  
pp. 85-92 ◽  
Author(s):  
R. Nogueira ◽  
I. Ferreira ◽  
P. Janknecht ◽  
J.J. Rodríguez ◽  
P. Oliveira ◽  
...  

Natural interactions between water, soil, atmosphere, plants and microorganisms include physical, chemical and biological processes with decontaminating capacities. Natural or energy-saving wastewater treatment systems utilize these processes and thereby enable a sustainable management in the field of wastewater treatment, offering low investment and operation costs, little or no energy consumption, little and low-skill labor requirements, good landscape integration and excellent feasibility for small settlements, especially when remote from centralized sewer systems. The objective of this work is the development of cost functions for investment and operation of energy-saving wastewater treatment technologies. Cost functions are essential for making cost estimations based on a very reduced number of variables. The latter are easily identified and quantified and have a direct bearing on the costs in question. The formulated investment and operation cost functions follow a power law, and the costs decrease with the increase of the population served. The different energy-saving wastewater treatment systems serving small population settlements, between 50 p.e. and 250 p.e., present associated investment costs varying from 400 €/p.e. to 200 €/p.e. and annual operation costs in the range of 70 €/p.e. to 20 €/p.e., respectively.


1995 ◽  
Vol 32 (11) ◽  
pp. 85-95 ◽  
Author(s):  
Hassaan A. Abd El Gawad ◽  
J. H. C. Butter

In 1993 the Governorate of Fayoum completed its master plan for wastewater management. The master plan presents a staged implementation schedule for the development of wastewater facilities for the Governorate, covering needs up to the year 2020. The targets are ambitious: in order to meet sanitary health standards, nearly two million people (or 60% of the total population) living in 70 towns and villages would need to be served with sewerage systems. Providing all these areas with separate wastewater treatment plants would be impractical. The centralization of treatment at a limited number of treatment plants for clusters of towns and villages has advantages in terms of manageability, cost and environmental protection. In the master plan the configuration of these clusters is presented. For that purpose a stepped approach has been developed: an approach in which aspects such as construction and operation costs of the facilities, existing infrastructure, the geography of the governorate, environmental impact, alternative treatment technologies and phasing of implementation have been considered. An important element of the stepped approach is an analytical model with which - from financial point of view - the optimum size of a cluster can be estimated. Variables of the model are sizes of towns and villages, distances and treatment technologies. The output of the model is a set of general design criteria which has been applied to the specific situation in the governorate. The model has contributed to the establishment of the Master Plan for Wastewater: a plan now used by the Fayoum Sanitation Department as a framework to initiate new projects and to direct the activities of other agencies working in the sanitation sector in the governorate.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 453-462
Author(s):  
E.U. Cokgor ◽  
C.W. Randall

The Wilderness Wastewater Treatment Plant (WWTP) located in Orange County, Virginia is a four concentric ring oxidation ditch activated sludge system with a rated capacity of 1,935 m3/day. The three outer rings are used for wastewater treatment and the inner ring is used as an aerobic digester. The flow capacity has been increased from 1,935 to 3,760 m3/d, however, the desired design capacity has since been increased to 3,870 m3/d, and there are plans to eventually expand to approximately 4,840 m3/d with improved nitrogen removal. The design goal for the planned upgrade is to discharge an effluent that contains less than 10 mg/l total nitrogen (TN) at all times, with an annual average of 8 mg/l or less. In this study, the pre-upgrade performance of the Wilderness Wastewater Treatment Plant was evaluated and several modifications were recommended for the incorporation of biological nutrient removal (BNR).


Sign in / Sign up

Export Citation Format

Share Document