A Hybrid Multi-Agent-Based BFPSO Algorithm for Optimization of Benchmark Functions

2019 ◽  
Vol 29 (07) ◽  
pp. 2050112
Author(s):  
Renuka Kamdar ◽  
Priyanka Paliwal ◽  
Yogendra Kumar

The goal to provide faster and optimal solution to complex and high-dimensional problem is pushing the technical envelope related to new algorithms. While many approaches use centralized strategies, the concept of multi-agent systems (MASS) is creating a new option related to distributed analyses for the optimization problems. A novel learning algorithm for solving the global numerical optimization problems is proposed. The proposed learning algorithm integrates the multi-agent system and the hybrid butterfly–particle swarm optimization (BFPSO) algorithm. Thus it is named as multi-agent-based BFPSO (MABFPSO). In order to obtain the optimal solution quickly, each agent competes and cooperates with its neighbors and it can also learn by using its knowledge. Making use of these agent–agent interactions and sensitivity and probability mechanism of BFPSO, MABFPSO realizes the purpose of optimizing the value of objective function. The designed MABFPSO algorithm is tested on specific benchmark functions. Simulations of the proposed algorithm have been performed for the optimization of functions of 2, 20 and 30 dimensions. The comparative simulation results with conventional PSO approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low-and high-dimensional functions. The optimization strategy is general and can be used to solve other power system optimization problems as well.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rahib H. Abiyev ◽  
Mustafa Tunay

A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube optimization (HO) algorithm. The HO algorithm comprises the initialization and evaluation process, displacement-shrink process, and searching space process. The initialization and evaluation process initializes initial solution and evaluates the solutions in given hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions. The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions. The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low and high dimensional functions.


2006 ◽  
Vol 21 (3) ◽  
pp. 231-238 ◽  
Author(s):  
JIM DOWLING ◽  
RAYMOND CUNNINGHAM ◽  
EOIN CURRAN ◽  
VINNY CAHILL

This paper presents Collaborative Reinforcement Learning (CRL), a coordination model for online system optimization in decentralized multi-agent systems. In CRL system optimization problems are represented as a set of discrete optimization problems, each of whose solution cost is minimized by model-based reinforcement learning agents collaborating on their solution. CRL systems can be built to provide autonomic behaviours such as optimizing system performance in an unpredictable environment and adaptation to partial failures. We evaluate CRL using an ad hoc routing protocol that optimizes system routing performance in an unpredictable network environment.


Author(s):  
Hekmat Mohmmadzadeh ◽  
Farhad Soleimanian Gharehchopogh

There exist numerous high-dimensional problems in the real world which cannot be solved through the common traditional methods. The metaheuristic algorithms have been developed as successful techniques for solving a variety of complex and difficult optimization problems. Notwithstanding their advantages, these algorithms may turn out to have weak points such as lower population diversity and lower convergence rate when facing complex high-dimensional problems. An appropriate approach to solve such problems is to apply multi-agent systems along with the metaheuristic algorithms. The present paper proposes a new approach based on the multi-agent systems and the concept of agent, which is named Multi-Agent Metaheuristic (MAMH) method. In the proposed approach, several basic and powerful metaheuristic algorithms, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Bat Algorithm (BA), Flower Pollination Algorithm (FPA), Gray Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Crow Search Algorithm (CSA), Farmland Fertility Algorithm (FFA), are considered as separate agents each of which sought to achieve its own goals while competing and cooperating with others to achieve the common goals. In overall, the proposed method was tested on 32 complex benchmark functions, the results of which indicated effectiveness and powerfulness of the proposed method for solving the high-dimensional optimization problems. In addition, in this paper, the binary version of the proposed approach, called Binary MAMH (BMAMH), was executed on the spam email dataset. According to the results, the proposed method exhibited a higher precision in detection of the spam emails compared to other metaheuristic algorithms and methods.


Games ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Gustavo Chica-Pedraza ◽  
Eduardo Mojica-Nava ◽  
Ernesto Cadena-Muñoz

Multi-Agent Systems (MAS) have been used to solve several optimization problems in control systems. MAS allow understanding the interactions between agents and the complexity of the system, thus generating functional models that are closer to reality. However, these approaches assume that information between agents is always available, which means the employment of a full-information model. Some tendencies have been growing in importance to tackle scenarios where information constraints are relevant issues. In this sense, game theory approaches appear as a useful technique that use a strategy concept to analyze the interactions of the agents and achieve the maximization of agent outcomes. In this paper, we propose a distributed control method of learning that allows analyzing the effect of the exploration concept in MAS. The dynamics obtained use Q-learning from reinforcement learning as a way to include the concept of exploration into the classic exploration-less Replicator Dynamics equation. Then, the Boltzmann distribution is used to introduce the Boltzmann-Based Distributed Replicator Dynamics as a tool for controlling agents behaviors. This distributed approach can be used in several engineering applications, where communications constraints between agents are considered. The behavior of the proposed method is analyzed using a smart grid application for validation purposes. Results show that despite the lack of full information of the system, by controlling some parameters of the method, it has similar behavior to the traditional centralized approaches.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3654
Author(s):  
Nastaran Gholizadeh ◽  
Petr Musilek

In recent years, machine learning methods have found numerous applications in power systems for load forecasting, voltage control, power quality monitoring, anomaly detection, etc. Distributed learning is a subfield of machine learning and a descendant of the multi-agent systems field. Distributed learning is a collaboratively decentralized machine learning algorithm designed to handle large data sizes, solve complex learning problems, and increase privacy. Moreover, it can reduce the risk of a single point of failure compared to fully centralized approaches and lower the bandwidth and central storage requirements. This paper introduces three existing distributed learning frameworks and reviews the applications that have been proposed for them in power systems so far. It summarizes the methods, benefits, and challenges of distributed learning frameworks in power systems and identifies the gaps in the literature for future studies.


2015 ◽  
Vol 8 (2/3) ◽  
pp. 180-205 ◽  
Author(s):  
Alireza Jahani ◽  
Masrah Azrifah Azmi Murad ◽  
Md. Nasir bin Sulaiman ◽  
Mohd. Hasan Selamat

Purpose – The purpose of this paper is to propose an approach that integrates three complementary perspectives, multi-agent systems, fuzzy logic and case-based reasoning. Unsatisfied customers, information overload and high uncertainty are the main challenges that are faced by today’s supply chains. In addition, a few existing agent-based approaches are tied to real-world supply chain functions like supplier selection. These approaches are static and do not adequately take the qualitative and quantitative factors into consideration. Therefore, an agent-based framework is needed to address these issues. Design/methodology/approach – The proposed approach integrates three complementary perspectives, multi-agent systems, fuzzy logic and case-based reasoning, as a common framework. These perspectives were rarely used together as a common framework in previous studies. Furthermore, an exploratory case study in an office furniture company is undertaken to illustrate the value of the framework. Findings – The proposed agent-based framework evaluates supply offers based on customers’ preferences, recommends alternative products in the case of stock-out and provides a collaborative environment among agents who represent different supply chain entities. The proposed fuzzy case-based reasoning (F-CBR) approach reduces the information overload by organizing them into the relevant cases that causes less overall search between cases. In addition, its fuzzy aspect addresses the high uncertainty of supply chains, especially when there are different customers’ orders with different preferences. Research limitations/implications – The present study does not include the functions of inventory management and negotiation between agents. Furthermore, only the case description and case retrieval phases of the case-based reasoning approach are investigated, and the remaining phases like case retaining, case reusing and case revising are not included in the scope of this paper. Originality/value – This framework balances the interests of different supply chain structural elements where each of them is represented by a specific agent for better collaboration, decision-making and problem-solving in a multi-agent environment. In addition, the supplier selection and order gathering mechanisms are developed based on customers’ orders.


2012 ◽  
Vol 566 ◽  
pp. 572-579
Author(s):  
Abdolkarim Niazi ◽  
Norizah Redzuan ◽  
Raja Ishak Raja Hamzah ◽  
Sara Esfandiari

In this paper, a new algorithm based on case base reasoning and reinforcement learning (RL) is proposed to increase the convergence rate of the reinforcement learning algorithms. RL algorithms are very useful for solving wide variety decision problems when their models are not available and they must make decision correctly in every state of system, such as multi agent systems, artificial control systems, robotic, tool condition monitoring and etc. In the propose method, we investigate how making improved action selection in reinforcement learning (RL) algorithm. In the proposed method, the new combined model using case base reasoning systems and a new optimized function is proposed to select the action, which led to an increase in algorithms based on Q-learning. The algorithm mentioned was used for solving the problem of cooperative Markov’s games as one of the models of Markov based multi-agent systems. The results of experiments Indicated that the proposed algorithms perform better than the existing algorithms in terms of speed and accuracy of reaching the optimal policy.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1928 ◽  
Author(s):  
Alfonso González-Briones ◽  
Fernando De La Prieta ◽  
Mohd Mohamad ◽  
Sigeru Omatu ◽  
Juan Corchado

This article reviews the state-of-the-art developments in Multi-Agent Systems (MASs) and their application to energy optimization problems. This methodology and related tools have contributed to changes in various paradigms used in energy optimization. Behavior and interactions between agents are key elements that must be understood in order to model energy optimization solutions that are robust, scalable and context-aware. The concept of MAS is introduced in this paper and it is compared with traditional approaches in the development of energy optimization solutions. The different types of agent-based architectures are described, the role played by the environment is analysed and we look at how MAS recognizes the characteristics of the environment to adapt to it. Moreover, it is discussed how MAS can be used as tools that simulate the results of different actions aimed at reducing energy consumption. Then, we look at MAS as a tool that makes it easy to model and simulate certain behaviors. This modeling and simulation is easily extrapolated to the energy field, and can even evolve further within this field by using the Internet of Things (IoT) paradigm. Therefore, we can argue that MAS is a widespread approach in the field of energy optimization and that it is commonly used due to its capacity for the communication, coordination, cooperation of agents and the robustness that this methodology gives in assigning different tasks to agents. Finally, this article considers how MASs can be used for various purposes, from capturing sensor data to decision-making. We propose some research perspectives on the development of electrical optimization solutions through their development using MASs. In conclusion, we argue that researchers in the field of energy optimization should use multi-agent systems at those junctures where it is necessary to model energy efficiency solutions that involve a wide range of factors, as well as context independence that they can achieve through the addition of new agents or agent organizations, enabling the development of energy-efficient solutions for smart cities and intelligent buildings.


2018 ◽  
Vol 7 (1) ◽  
pp. 5-24 ◽  
Author(s):  
Martina Husáková

Abstract Complex systems are characterised by a huge amount of components, which are highly linked with each other. Tourism is one of the examples of complex systems collecting various activities leading to the enrichment of travellers in the view of receiving new experiences and increasing economic prosperity of specific destinations. The complex systems can be investigated with various bottom-up and top-down approaches. The multi-agent-based modelling is the bottom-up approach that is focused on the representation of individual entities for the exploration of possible interactions among them and their effects on surrounding environments. These systems are able to integrate knowledge of socio-cultural, economic, physical, biological or environmental systems for in-silico models development, which can be used for experimentation with a system. The main aim of the presented text is to introduce links between tourism, complexity and to advocate usefulness of the multi-agent-based systems for the exploration of tourism and its sustainability. The evaluation of suitability of the multi-agent systems in tourism is based on the investigation of fundamental characteristics of these two systems and on the review of specific applications of the multi-agent systems in sustainable tourism.


Author(s):  
H. Faroqi ◽  
M.-S. Mesgari

During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.


Sign in / Sign up

Export Citation Format

Share Document