scholarly journals Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1329
Author(s):  
João Restivo ◽  
Olívia Salomé Gonçalves Pinto Soares ◽  
Manuel Fernando Ribeiro Pereira

A large number of methodologies for fabrication of 1D carbon nanomaterials have been developed in the past few years and are extensively described in the literature. However, for many applications, and in particular in catalysis, a translation of the materials to a macro-structured form is often required towards their use in practical operation conditions. This review intends to describe the available methods currently used for fabrication of such macro-structures, either already applied or with potential for application in the fabrication of macro-structured catalysts containing 1D carbon nanomaterials. A review of the processing methods used in the fabrication of macrostructures containing 1D sp2 hybridized carbon nanomaterials is presented. The carbon nanomaterials here discussed include single- and multi-walled carbon nanotubes, and several types of carbon nanofibers (fishbone, platelet, stacked cup, etc.). As the processing methods used in the fabrication of the macrostructures are generally very similar for any of the carbon nanotubes or nanofibers due to their similar chemical nature (constituted by stacked ordered graphene planes), the review aggregates all under the carbon nanofiber (CNF) moniker. The review is divided into methods where the CNFs are synthesized already in the form of a macrostructure (in situ methods) or where the CNFs are previously synthesized and then further processed into the desired macrostructures (ex situ methods). We highlight in particular the advantages of each approach, including a (non-exhaustive) description of methods commonly described for in situ and ex situ preparation of the catalytic macro-structures. The review proposes methods useful in the preparation of catalytic structures, and thus a number of techniques are left out which are used in the fabrication of CNF-containing structures with no exposure of the carbon materials to reactants due to, for example, complete coverage of the CNF. During the description of the methodologies, several different macrostructures are described. A brief overview of the potential applications of such structures in catalysis is also offered herein, together with a short description of the catalytic potential of CNFs in general.

MRS Advances ◽  
2019 ◽  
Vol 4 (33-34) ◽  
pp. 1869-1875
Author(s):  
Steven J. Knauss ◽  
Samuel A. Brennan ◽  
Mark A. Atwater

AbstractCarbon nanomaterials are consistently providing new excitement over their properties and potential applications, but many of these material have yet to fully live up to their expectations commercially. The barrier to adoption often exists as a result of complex processing, fragility of the as-produced material, or difficulty scaling beyond laboratory quantities. This work provides a new approach for utilizing fibrous carbon nanomaterials to advance the technology toward new applications and industrial utility. This is accomplished by creating tailored device architectures through in-situ integration of activated carbon powder using carbon nanofiber deposition. The resulting hybrid materials and components can serve in diverse applications, with each instance able to be fine-tuned through a combination of processing parameters. The applications of such materials are anticipated to directly serve current carbon-based technology in filtration, energy storage and delivery, and thermal management, but the concepts are not limited to current carbon applications.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1109-1114
Author(s):  
Peng Lv ◽  
Yeyun Meng ◽  
Lingxia Song ◽  
Hao Pang ◽  
Weiqu Liu

A robust self-supported electrode was prepared by a facile combination of ultrasonic dispersion and consequent in situ polymerization.


2021 ◽  
Author(s):  
Shankar S. Narwade ◽  
Shivsharan M. Mali ◽  
Bhaskar R. Sathe

A study on the in situ decoration of ethylenediamine (EDA) on acid functionalized multi-walled carbon nanotubes (O-MWCNTs) for overall water splitting reactions at all pH as an efficient and inexpensive metal-free multifunctional electrocatalyst.


Carbon ◽  
2004 ◽  
Vol 42 (2) ◽  
pp. 455-458 ◽  
Author(s):  
Jiahua Shi ◽  
Yujun Qin ◽  
Wei Wu ◽  
Xianglong Li ◽  
Zhi-Xin Guo ◽  
...  

Author(s):  
Rafael Vargas-Bernal

Gas sensing continues attracting research communities due to its potential applications in the sectors military, industrial and commercial. A special emphasis is placed on the use of carbon nanomaterials such as carbon nanotubes and graphene, as sensing materials. The chapter will be divided as follows: In the first part, a description of the main topologies and materials (carbon nanomaterials plus polymers, metals, ceramics or combinations between these groups) used to fabricate gas sensors based on graphene and carbon nanotubes that are operated by conductance or resistance electrical, is realized. Next, different mathematical models that can be used to simulate gas sensors based on these materials are presented. In the third part, the impact of the graphene and carbon nanotubes on gas sensors is exemplified with technical advances achieved until now. Finally, it is provided a prospective analysis on the role of the gas sensors based on carbon nanomaterials in the next decades.


Sign in / Sign up

Export Citation Format

Share Document