Anaerobic digestion of sunflower oil cake: a current overview

2013 ◽  
Vol 67 (2) ◽  
pp. 410-417 ◽  
Author(s):  
M. A. De la Rubia ◽  
V. Fernández-Cegrí ◽  
F. Raposo ◽  
R. Borja

Due to the chemical and physical structure of a lignocellulosic biomass, its anaerobic digestion (AD) is a slow and difficult process. In this paper, the results obtained from a batch biochemical methane potential (BMP) test and fed-batch mesophilic AD assays of sunflower oil cake (SuOC) are presented. Taking into account the low digestibility shown during one-stage experiments the methane yield decreased considerably after increasing the organic loading rate (OLR) from 2 to 3 g VS L−1 d−1, SuOC was subjected to a two-stage AD process (hydrolytic-acidogenic and methanogenic stages), in two separate reactors operating in series where the methanogenic stage became acidified (with >1,600 mg acetic acid L−1) at an OLR as low as 2 g VS L−1 d−1. More recently, BMP assays were carried out after mechanical, thermal, and ultrasonic pre-treatments to determine the best option on the basis of the methane yield obtained.

2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2014 ◽  
Vol 70 (4) ◽  
pp. 599-604 ◽  
Author(s):  
Bing Wang ◽  
Ivo Achu Nges ◽  
Mihaela Nistor ◽  
Jing Liu

In this work, biochemical methane potential (BMP) tests with cellulose as a model substrate were performed with the aid of three manually operated or conventional experimental setups (based on manometer, water column and gas bag) and one automated apparatus specially designed for analysis of BMP. The methane yields were 340 ± 18, 354 ± 13, 345 ± 15 and 366 ± 5 ml CH4/g VS obtained from experimental setups with manometer, water column, gas bag, and automatic methane potential test system, which corresponded to a biodegradability of 82, 85, 83 and 88% respectively. The results demonstrated that the methane yields of cellulose obtained from conventional and automatic experimental setups were comparable; however, the methane yield obtained from the automated apparatus showed greater precision. Moreover, conventional setups for the BMP test were more time- and labour-intensive compared with the automated apparatus.


2012 ◽  
Vol 66 (7) ◽  
pp. 1416-1423 ◽  
Author(s):  
C. P. Pabón Pereira ◽  
G. Castañares ◽  
J. B. van Lier

A protocol was developed for determining the biochemical methane potential (BMP) of plant material using the OxiTop® system. NaOH pellets for CO2 absorption and different pretreatment methods were tested for their influence in the BMP test. The use of NaOH pellets in the headspace of the bottle negatively affected the stability of the test increasing the pH and inhibiting methanization. Sample comminution increased the biodegradability of plant samples. Our results clearly indicate the importance of test conditions during the assessment of anaerobic biodegradability of plant material, considering BMP differences as high as 44% were found. Guidelines and recommendations are given for screening plant material suitable for anaerobic digestion using the OxiTop® system.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2017
Author(s):  
Domenica Pangallo ◽  
Altea Pedullà ◽  
Demetrio Antonio Zema ◽  
Paolo S. Calabrò

Anaerobic digestion (AD) is a suitable management option for the energy valorization of many wastes, including the organic fraction of municipal solid waste (OFMSW). However, in some cases, long storage after the separate collection of this waste is required for management reasons, especially when the amount of waste to be treated temporarily exceeds the capacity of available AD plants. This study evaluates the biochemical methane potential (BMP) of the OFMSW after preliminary storage of 2, 6, and 10 days, in order to assess whether they are still suitable for AD or not. Moreover, the accuracy of three kinetic models (first order, Gompertz, and logistic models) in estimating the methane yield of stored OFMSW is tested. The resulting methane yield was between about 500 and 650 NmL·gVS−1 and slightly increased with the increase of the storage time after collection. Overall, this study has demonstrated that storage of OFMSW, when the collected amount of solid waste exceeds the treatment capacity of AD plants, a storage time up to 10 days does not impact the methane yield of the process.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 921 ◽  
Author(s):  
Jameson Filer ◽  
Huihuang H. Ding ◽  
Sheng Chang

Biochemical methane potential (BMP) tests are widely used for characterizing a substrate’s influence on the anaerobic digestion process. As of 2018, there continues to be a lack of standardization of units and techniques, which impacts the comparability and validity of BMP results. However, BMP methods continue to evolve, and key aspects are studied to further eliminate systematic errors. This paper aims to update these key aspects with the latest research progress both to introduce the importance of each variable to those new to BMP measurements and to show the complexity required to design an accurate BMP test.


Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


2013 ◽  
Vol 827 ◽  
pp. 84-90 ◽  
Author(s):  
Maurizio Carlini ◽  
Sonia Castellucci ◽  
Silvia Cocchi

One of the most promising processes to exploit Solid Olive-Mill Waste (SOMW) for energy production is anaerobic digestion. An experimental study has been carried out on SOMW and inoculum, consisting of Cattle Slurry Digested (CSD) and coming from an anaerobic digestion plant. A substrate with an optimal supply ratio equal to 2:1 has been investigated in a reactor at 37°C by analysing the biogas production. The Biochemical Methane Potential (BMP) test has been carried out, monitoring pH, biogas production (amount and composition). According to the tests results, SOMWs needed to be diluted and inoculated, moreover the pH control is foundamental in order to obtain a significant biogas production. Anaerobic digestion plant of SOMW should be promoted in Mediterranean countries as an environmentally sound option for waste management and energy production, since olive mills are very widespread agro-industries in this area.


2020 ◽  
Vol 10 (7) ◽  
pp. 2589 ◽  
Author(s):  
Benedikt Hülsemann ◽  
Lijun Zhou ◽  
Wolfgang Merkle ◽  
Juli Hassa ◽  
Joachim Müller ◽  
...  

High precision of measurement of methane potential is important for the economic operation of biogas plants in the future. The biochemical methane potential (BMP) test based on the VDI 4630 protocol is the state-of-the-art method to determine the methane potential in Germany. The coefficient of variation (CV) of methane yield was >10% in several previous inter-laboratory tests. The aim of this work was to investigate the effects of inoculum and the digestion system on the measurement variability. Methane yield and methane percentage of five substrates were investigated in a Hohenheim biogas yield test (D-HBT) by using five inocula, which were used several times in inter- laboratory tests. The same substrates and inocula were also tested in other digestion systems. To control the quality of the inocula, the effect of adding trace elements (TE) and the microbial community was investigated. Adding TE had no influence for the selected, well- supplied inocula and the community composition depended on the source of the inocula. The CV of the specific methane yield was <4.8% by using different inocula in one D-HBT (D-HBT1) and <12.8% by using different digestion systems compared to D-HBT1. Incubation time between 7 and 14 days resulted in a deviation in CV of <4.8%.


Sign in / Sign up

Export Citation Format

Share Document