scholarly journals Pyrometallurgical Lithium-Ion-Battery Recycling: Approach to Limiting Lithium Slagging with the InduRed Reactor Concept

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 84
Author(s):  
Stefan Windisch-Kern ◽  
Alexandra Holzer ◽  
Christoph Ponak ◽  
Harald Raupenstrauch

The complexity of the waste stream of spent lithium-ion batteries poses numerous challenges on the recycling industry. Pyrometallurgical recycling processes have a lot of benefits but are not able to recover lithium from the black matter since lithium is slagged due to its high oxygen affinity. The presented InduRed reactor concept might be a promising novel approach, since it does not have this disadvantage and is very flexible concerning the chemical composition of the input material. To prove its basic suitability for black matter processing, heating microscope experiments, thermogravimetric analysis and differential scanning calorimetry have been conducted to characterize the behavior of nickel rich cathode materials (LiNi0.8Co0.15Al0.05O2 and LiNi0.33Mn0.33Co0.33O2) as well as black matter from a pretreatment process under reducing conditions. Another experimental series in a lab scale InduRed reactor was further used to investigate achievable transfer coefficients for the metals of interest. The promising results show technically feasible reaction temperatures of 800 ∘C to 1000 ∘C and high recovery potentials for nickel, cobalt and manganese. Furthermore, the slagging of lithium was largely prevented and a lithium removal rate of up to 90% of its initial mass was achieved.

1995 ◽  
Vol 31 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Jean-Pierre Arcangeli ◽  
Erik Arvin

This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols, chlorophenols, nitrophenol, chlorobenzenes and aromatic nitrogen-, sulphur- or oxygen-containing heterocyclic compounds (NSO-compounds). Furthermore, a comparison with degradation rates observed for easily degradable organics is also presented. At concentrations below 20-100 μg/l the degradation of the aromatic compounds was typically controlled by first order kinetics. The first-order surface removal rate constants were surprisingly similar, ranging from 2 to 4 m/d. It appears that NSO-compounds inhibit the degradation of aromatic hydrocarbons, even at very low concentrations of NSO-compounds. Under nitrate-reducing conditions, toluene was easily biodegraded. The xylenes and ethylbenzene were degraded cometabolically if toluene was used as a primary carbon source; their removal was influenced by competitive inhibition with toluene. These interaction phenomena are discussed in this paper and a kinetic model taking into account cometabolism and competitive inhibition is proposed.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 149
Author(s):  
Alexandra Holzer ◽  
Stefan Windisch-Kern ◽  
Christoph Ponak ◽  
Harald Raupenstrauch

The bottleneck of recycling chains for spent lithium-ion batteries (LIBs) is the recovery of valuable metals from the black matter that remains after dismantling and deactivation in pre‑treatment processes, which has to be treated in a subsequent step with pyrometallurgical and/or hydrometallurgical methods. In the course of this paper, investigations in a heating microscope were conducted to determine the high-temperature behavior of the cathode materials lithium cobalt oxide (LCO—chem., LiCoO2) and lithium iron phosphate (LFP—chem., LiFePO4) from LIB with carbon addition. For the purpose of continuous process development of a novel pyrometallurgical recycling process and adaptation of this to the requirements of the LIB material, two different reactor designs were examined. When treating LCO in an Al2O3 crucible, lithium could be removed at a rate of 76% via the gas stream, which is directly and purely available for further processing. In contrast, a removal rate of lithium of up to 97% was achieved in an MgO crucible. In addition, the basic capability of the concept for the treatment of LFP was investigated whereby a phosphorus removal rate of 64% with a simultaneous lithium removal rate of 68% was observed.


1975 ◽  
Vol 400 (2) ◽  
pp. 343-347 ◽  
Author(s):  
H.B. Kleckner ◽  
J.B. Wilson ◽  
J.G. Lindeman ◽  
P.D. Stevens ◽  
G. Niazi ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1151
Author(s):  
Mary Frances McMullin

True erythrocytosis is present when the red cell mass is greater than 125% of predicted sex and body mass, which is reflected by elevated hemoglobin and hematocrit. Erythrocytosis can be primary or secondary and congenital or acquired. Congenital defects are often found in those diagnosed at a young age and with a family history of erythrocytosis. Primary congenital defects mainly include mutations in the Erythropoietin receptor gene but SH2B3 has also been implicated. Secondary congenital erythrocytosis can arise through a variety of genetic mechanisms, including mutations in the genes in the oxygen sensing pathway, with high oxygen affinity hemoglobin variants and mutations in other genes such as BPMG, where ultimately the production of erythropoietin is increased, resulting in erythrocytosis. Recently, mutations in PIEZ01 have been associated with erythrocytosis. In many cases, a genetic variant cannot be identified, leaving a group of patients with the label idiopathic erythrocytosis who should be the subject of future investigations. The clinical course in congenital erythrocytosis is hard to evaluate as these are rare cases. However, some of these patients may well present at a young age and with sometimes catastrophic thromboembolic events. There is little evidence to guide the management of congenital erythrocytosis but the use of venesection and low dose aspirin should be considered.


1995 ◽  
Vol 96 (6) ◽  
pp. 711-716 ◽  
Author(s):  
H. Wajcman ◽  
E. Girodon ◽  
D. Prom� ◽  
M.L. North ◽  
F. Plassa ◽  
...  

2013 ◽  
Vol 787 ◽  
pp. 58-64 ◽  
Author(s):  
Xiang Feng Li ◽  
Zhao Zhang ◽  
Fang Liu ◽  
Shu Ping Zheng

The LiFePO4/C composites with different morphology are synthesized by a novel glucose assisted hydrothermal method at various glucose concentrations (from 0 to 0.25mol/L) and the insoluble lithium source Li2CO3, (NH4)2Fe (SO4)2·6H2O and (NH4)2HPO4(n (Li):n (Fe):n (P)=1:1:1) are used as raw materials. The structure, morphology, thermal performance and electrochemical properties of the synthesized composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry/differential scanning calorimetry (TG-DSC), galvanostatic charge/discharge tests and cyclic voltammetry (CV). The results show that the LiFePO4/C synthesized with 0.125mol/L glucose has the relatively small particles size (0.1~0.5μm) and the well spherical morphology. The optimal sample exhibits a high discharge capacity of 160.0mAh/g at the first cycle and exhibits a good reversibility and stability in CV tests.


2021 ◽  
Vol 169 ◽  
pp. 106924
Author(s):  
Anna Vanderbruggen ◽  
Eligiusz Gugala ◽  
Rosie Blannin ◽  
Kai Bachmann ◽  
Rodrigo Serna-Guerrero ◽  
...  

Author(s):  
Epifania Rita Testa ◽  
Adriana Masotti ◽  
Patrizia Valeri ◽  
Luciana Geremia ◽  
Valeria Brunetta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document