scholarly journals Towards Autonomous Operation by Advanced Process Control—Process Analytical Technology for Continuous Biologics Antibody Manufacturing

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 172
Author(s):  
Heribert Helgers ◽  
Axel Schmidt ◽  
Lara Julia Lohmann ◽  
Florian Lukas Vetter ◽  
Alex Juckers ◽  
...  

Continuous manufacturing opens up new operation windows with improved product quality in contrast to documented lot deviations in batch or fed-batch operations. A more sophisticated process control strategy is needed to adjust operation parameters and keep product quality constant during long-term operations. In the present study, the applicability of a combination of spectroscopic methods was evaluated to enable Advanced Process Control (APC) in continuous manufacturing by Process Analytical Technology (PAT). In upstream processing (USP) and aqueous two-phase extraction (ATPE), Raman-, Fourier-transformed infrared (FTIR), fluorescence- and ultraviolet/visible- (UV/Vis) spectroscopy have been successfully applied for titer and purity prediction. Raman spectroscopy was the most versatile and robust method in USP, ATPE, and precipitation and is therefore recommended as primary PAT. In later process stages, the combination of UV/Vis and fluorescence spectroscopy was able to overcome difficulties in titer and purity prediction induced by overlapping side component spectra. Based on the developed spectroscopic predictions, dynamic control of unit operations was demonstrated in sophisticated simulation studies. A PAT development workflow for holistic process development was proposed.

mAbs ◽  
2018 ◽  
pp. 1-6
Author(s):  
Bhumit A. Patel ◽  
Adrian Gospodarek ◽  
Michael Larkin ◽  
Sophia A. Kenrick ◽  
Mark A. Haverick ◽  
...  

2014 ◽  
Vol 968 ◽  
pp. 226-229
Author(s):  
Xiao Qing Xu ◽  
Xiao Dong Hao ◽  
Shi Guang Zhou ◽  
Qi Fu Zhang

This article describes the current quality control method during hot coating process. To improve the current quality control method during hot coating process, this article also elaborates the advanced coated product quality control system based on process analytical technology (PAT), the concept of which is “Quality by Design”, the targets of which are to enhance process stability and to improve the technological and economic index.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1874
Author(s):  
Axel Schmidt ◽  
Heribert Helgers ◽  
Florian Lukas Vetter ◽  
Alex Juckers ◽  
Jochen Strube

SARS-COVID-19 vaccine supply for the total worldwide population has a bottleneck in manufacturing capacity. Assessment of existing messenger ribonucleic acid (mRNA) vaccine processing shows a need for digital twins enabled by process analytical technology approaches in order to improve process transfer for manufacturing capacity multiplication, a reduction in out-of-specification batch failures, qualified personal training for faster validation and efficient operation, optimal utilization of scarce buffers and chemicals and speed-up of product release by continuous manufacturing. In this work, three manufacturing concepts for mRNA-based vaccines are evaluated: Batch, full-continuous and semi-continuous. Technical transfer from batch single-use to semi-continuous stainless-steel, i.e., plasmid deoxyribonucleic acid (pDNA) in batch and mRNA in continuous operation mode, is recommended, in order to gain: faster plant commissioning and start-up times of about 8–12 months and a rise in dose number by a factor of about 30 per year, with almost identical efforts in capital expenditures (CAPEX) and personnel resources, which are the dominant bottlenecks at the moment, at about 25% lower operating expenses (OPEX). Consumables are also reduceable by a factor of 6 as outcome of this study. Further optimization potential is seen at consequent digital twin and PAT (Process Analytical Technology) concept integration as key-enabling technologies towards autonomous operation including real-time release-testing.


2020 ◽  
Vol 190 ◽  
pp. 00037
Author(s):  
Safira Firdaus Mujiyanti ◽  
Totok Ruki Biyanto

For the gas treatment process, the process that occurs is separating the gas from the components of H2S, CO2, and H2O. The separation of gases from these components uses the aid of Amine fluid and TEG fluid. The unit that important in this process are Amine and TEG Contactor. To be able to separate the three components from the gas, the mass flow rate of Amine and TEG must be controlled so that the processing can work optimally. In reality in the field, the input of this process from the well is not always steady. So, this condition becomes a disturbance from the control process. The solution to minimize the disturbance of process with Advanced Process Control (APC). Therefore, this research will design APC on Amine and TEG Contactor to improve the stability of the mass flow response of Amine and TEG. In designing APC, the plant model is required first. Plant modelling obtained with software HYSYS and validated with MATLAB. The result shows the RMSE value below 5 %. The result proved to be able to make the process more stable from before design proven by slurries settling time, steadystate errors and maximum overshoot.


2018 ◽  
Vol 538 (1-2) ◽  
pp. 167-178 ◽  
Author(s):  
Jenny M. Vargas ◽  
Sarah Nielsen ◽  
Vanessa Cárdenas ◽  
Anthony Gonzalez ◽  
Efrain Y. Aymat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document