scholarly journals Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1104
Author(s):  
Donatella Barisano ◽  
Giuseppe Canneto ◽  
Francesco Nanna ◽  
Antonio Villone ◽  
Emanuele Fanelli ◽  
...  

Biomass gasification for energy purposes has several advantages, such as the mitigation of global warming and national energy independency. In the present work, the data from an innovative and intensified steam/oxygen biomass gasification process, integrating a gas filtration step directly inside the reactor, are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen, carbon monoxide, carbon dioxide, and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER), 0.4–0.5 Steam/Biomass (S/B), and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data, the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2, 23–29%v CO, 31–36%v CO2, 9–11%v CH4, and light hydrocarbons lower than 1%v were also observed. Correspondingly, a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall, the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.

2012 ◽  
Vol 512-515 ◽  
pp. 575-578
Author(s):  
Hsien Chen ◽  
Chiou Liang Lin ◽  
Wun Yue Zeng ◽  
Zi Bin Xu

Catalysis was used to increase the H2 production, syngas heating value, enhanced carbon conversion efficiency and cold gas efficiency during gasification. Due to Cu and Zn were abundant in waste according to previous researches, this research discussed the effect of Cu and Zn on artificial waste gasification. The syngas composition and total lower heating value (LHV) were determined in this study. The results showed that the existence of Cu and Zn increased production of H2 and CO. However, the production of CH4 and CO2 decreased. At same time, total LHV was also increased. Additionally, the different Cu concentration affected gas composition and LHV, but the effect of Zn concentration was not significant.


2012 ◽  
Vol 66 (7) ◽  
Author(s):  
Afsin Gungor ◽  
Murat Ozbayoglu ◽  
Cosku Kasnakoglu ◽  
Atilla Biyikoglu ◽  
Bekir Uysal

AbstractIn this parametric study, the effects of coal and oxidiser type, air-to-fuel ratio, steam-to-fuel ratio, reactor temperature, and pressure on H2 and CO amounts at the gasifier output, H2/CO, and higher heating value of the syngas produced have been calculated using a coal gasification model. Model simulations have been performed to identify the optimum values which are assumed to be 100 % for both cold gas efficiency and carbon conversion efficiency in the gasification process. From this study, it may be observed that the moisture content of the coal type is of crucial importance for the air gasification process; the O2 content of similar coals (taking into consideration the moisture and H2 content) is of significant importance for the air gasification process. When compared with air gasification, air-steam gasification becomes a more effective coal gasification method. The optimum working condition for air-steam gasification is to carry out the process at one atmosphere. High gasifier temperatures are not needed for the air-steam gasification of coal.


2014 ◽  
Vol 699 ◽  
pp. 510-515
Author(s):  
Miao Miao Niu ◽  
Ya Ji Huang ◽  
Bao Sheng Jin

A model was developed for the enriched air-steam biomass gasification in a bubbling fluidized bed (BFB) gasifier using Aspen Plus. Restricted equilibrium method was used to eliminate the deviation caused by the diffusion effect of gas-particle. The model has been divided into three stages (drying and pyrolysis, partial combustion and gasification) for predicting the gasifier performance. Simulation results for gas composition, carbon conversion and cold gas efficiency versus oxygen percentage and steam to biomass ratio (S/B) were compared with the experimental results. Higher oxygen percentage improves the gasification process, increases the production of H2 and CO and results in better gasification efficiency. With increasing oxygen percentage, the production of CO2 and CH4 show decreasing trends. Steam injection enhances the H2 and CO2 production but decreases CO and CH4 production. Carbon conversion presents a slight decrease trend over the S/B range, while cold gas efficiency is first constant and then decreased.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad F ◽  
◽  
Ahmad N ◽  
Asghar U ◽  
Ali A ◽  
...  

Converting rice husk into energy is a promising method of generating renewable energy and reducing greenhouse gas emissions. In this research rice hush is considered as biomass fuel. The characteristics of rice husk gasification were investigated at an Equivalence Ratio (ER) of 0.25–0.38 and a gasifier temperature of 750-870°C in 20 tons per day (TPD) using steam explosion process in fluidized bed gasifier system. Different operation conditions, temperatures and loads, are investigated for their effects on the compositions, calorific properties, gasification efficiencies of syngas. The effects of the critical parameters, namely, Steam-to-Biomass Ratio (S/B), Particle size variation and gasification temperature on the quality of the product gas as well as the gasifier cold gas efficiency were analyzed. This is the new finding in the research. The optimal conditions of the gasification operation were an ER of 0.20 and gasifier temperature of 800°C. The low heating value of the gas product and cold gas efficiency were 1390kcal/Nm³ and 75%, respectively. After passing the generated gas through the gas cleaning units, it was confirmed that the tar in the product gas was removed with an efficiency of 98%. The cleaned product gas was used for the operation of 420kW, gas engine. Pressure loss often occurred at the bottom of the gasifier during the gasification operation; we found that the agglomerates generated by the gasification process caused it. To prevent the pressure loss caused by the agglomerates, the stable control of temperature inside the gasifier is needed and an ash removal device remove agglomerates should be installed to maintain stable long-term operation. This paper leads towards the production of Syngas and further on the electricity from the rice husk, an eminent biomass, copiously available all around the world. Especially in Pakistan, the rice is used abundantly so the raw material is easily available. The gas is produced using the gasification process in dual fluidized gasifier. It is a wonderful alternative to the natural gas with high calorific value. The sulfur contents are quite less compared to natural gas. It also have a good correlation with environment as flue gases emission is negligible relative to other source like coal, wood, plastic, waste etc. Another benefit of this process is the waste management and pollution control. The results are developed by using the detailed analysis of the process values of plants which is generating electricity by rice husk gasification. We learned, all results revealed that the dual fluidized bed gasification is more economical and efficient method compared to all other methods for commercial scale production of syngas. Results are analyzed which imply that the biomass is more gigantic source which replace the fossil fuels and leads towards the green energy in a more economical way. This paper provides an overview of previous works on combustion and gasification of rice husk in atmospheric fluiuidized bed reactors and summarizes the state of the art knowledge. As the high ash content, low bulk density, p characteristics and low ash melting point makes the other types of reactors like grate furnaces and downdraft gasifers either inefficient or unsuitable for rice husk conversion to energy, the fluiuidized bed reactor seems to be the promising choice. The overview shows that the reported results are from only small bench or lab scale units. Although a combustion efficiency of about 80% can normally be attained; the reported values in the literature, which are more than 95%, seem to be in higher order. Combustion intensity of about 530kg/h/m² is reported. It is also technically feasible to gasify rice husk in a fluidized bed reactor to yield combustible producer gas, even with sufficient heating value for application in internal combustion engines.


Author(s):  
Ghulamullah Maitlo ◽  
Rasool Bux Mahar ◽  
Khan Mohammad Brohi

Gasification of coal and biomass using CO2 and air mixture as a carrier gas offers an encouraging way to eliminate the shortage of energy and reduce carbon dioxide emissions. In the present study, the EulerianLagrangian approach was applied to understand the thermochemical conversion behavior of feedstock in entrained flow gasifier. Commercial CFD (Computational Fluid Dynamics) code ANSYS FLUENT®14 was used for the simulation purpose. It was observed that with variation in the CO2 in the air and the CO2 to cotton stalk ratio had a meaningful effect on gasification performance. The different ratios of air and CO2 in varying percentages such as 20% CO2, 30% CO2, 40% CO2, 50% CO2, 60% CO2, 70% CO2 and remaining percentages of air were introduced in entrained flow gasifier. With the increase in CO2 to cotton stalk ratio, the concentration of H2 and CO2 decreased whereas as the concentration of CO improved. It is revealed that mole fraction of CO and CH4 attained maximum when CO2% in the air was 50% and H2 mole fraction was observed maximum at a CO2% in the air was 30%. At 50% CO2 mixture in air, the maximum lower heating value and cold gas efficiency were observed. Therefore, the optimum situation might be 50% percentage CO2 in the gasifying agent for this entrained flow gasifier. Hence an increase in CO and H2, the cold gas efficiency and lower heating value reached the maximum. However, this study provides an appropriate route for energy production using cotton stalks as raw material and will help in designing and operation of the entrained flow reactor. The simulations indicate the thermodynamic limits of gasification and allow for the formulation of the general principles ruling this process. Moreover, no literature is available for the parametric investigations of Pakistani biomass gasification using entrained-flow gasifier. So this is a novel work for Pakistan and will be treated as foundation work for biomass gasification in the country.


Author(s):  
Nabila Aprianti ◽  
Muhammad Faizal ◽  
Muhammad Said ◽  
Subriyer Nasir

Oil palm empty fruit bunch (OPEFB is one of the enormous waste expected to become a renewable energy source. This study aimed to convert OPEFB into syngas through a gasification process using bentonite as a catalyst. The effects of temperature and product gas catalysts were investigated, and the efficiency of the gasification process was summarized. The process has used an updraft gasifier at 350-550 °C and air as the gasification medium (ER 0.2). The results indicate that syngas can be produced by updraft gasifier. When the temperature increase, the H2 and CO rising. The highest H2 and CO content of 27.74% and 20.43% are obtained at 550°C when bentonite applied. HHV and LHV range of 3.38~12.79 MJ/Nm3 and 3.03~11.58 MJ/Nm3, respectively. The maximum carbon conversion efficiency (CCE) and cold gas efficiency (CGE) reach 85.49% and 82.34%. Bentonite has been able to increase the concentration of the gas composition especially H2 and CO and the heating value of syngas.


Author(s):  
Rongbin Li ◽  
Mingzhuang Xie ◽  
Hui Jin ◽  
Liejin Guo ◽  
Fengqin Liu

AbstractThe three-dimensional (3-D) comprehensive mathematical model was developed to simulate the coal gasification process in an entrained flow gasifier with a swirl burner. The models employed or developed includes the coal devolatilization model, the char combustion and gasification model, the gas homogeneous reaction model, the random-trajectory model, gas turbulence model, and the P-1 radiation model. The solution of models was executed based on the computational fluid dynamics (CFD). By qualitatively comparing the results at different swirl number, the significant influences of swirl on characteristics of coal gasification such as flow distributions, gas temperature and product composition including hydrogen (H2), carbon monoxide (CO), etc., and on the performance of coal gasification such as averaged exit product composition, carbon conversion rate and cold gas efficiency, were in detail discussed. Especially, a proper swirl number (S ≤ 0.65) in favor of gasification was found for the investigated gasifier in this paper.


2020 ◽  
Vol 19 (2) ◽  
pp. 138
Author(s):  
Najwa Hayati Abdul Halim ◽  
Suriyati Saleh ◽  
Noor Asma Fazli Abdul Samad

Biomass gasification is widely used for converting solid biomass into synthesis gas for energy applications. Raw biomass is commonly used as feedstock for the gasification process but it usually contains high moisture content and low energy value which lowering synthesis gas production. Thus, torrefaction as a pre-treatment process is necessary in order to upgrade the properties of feedstock for producing more synthesis gas production and improving gasification performance. The objective of this work is to study the effect of gasification temperature on the synthesis gas production and gasification performance using raw and torrefied palm mesocarp fibre (PMF). The gasification process is conducted using bubbling fluidized bed using steam as gasifying agent. Based on experimental work, by increasing gasification temperature from 650 – 900 °C, the compositions of hydrogen and carbon monoxide gases were enhanced greatly while carbon dioxide and methane gases were decreased for both raw and torrefied PMF. In terms of gasification performance, synthesis gas yield for raw and torrefied PMF is increased from 0.91 to 1.23 Nm3/kg and 1.10 to 1.35 Nm3/kg respectively. Besides, lower heating value (LHV) of torrefied PMF is 0.04 MJ/Nm3 higher than raw PMF at 900 °C. The result showed that the percentage of cold gas efficiency (CGE) reached maximum of 67% for raw PMF while carbon conversion (CC) at 85.6% for torrefied PMF at a gasification temperature of 900 °C. The higher CC obtained by torrefied PMF is because of the increment of carbon content from 45.2% to 53.7% as a result of torrefaction. Gasification temperature of 800 °C showed the best performance of the PMF gasification since the maximum performances of LHV is achieved and started to decrease once the gasification temperature is operated beyond 800 °C.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7384
Author(s):  
M. Shahabuddin ◽  
Sankar Bhattacharya

This study assessed the entrained flow co-gasification characteristics of coal and biomass using thermodynamic equilibrium modelling. The model was validated against entrained flow gasifier data published in the literature. The gasification performance was evaluated under different operating conditions, such as equivalence ratio, temperature, pressure and coal to biomass ratio. It is observed that the lower heating value (LHV) and cold gas efficiency (CGE) increase with increasing temperature until the process reaches a steady state. The effect of pressure on syngas composition is dominant only at non-steady state conditions (<1100 °C). The variation in syngas composition is minor up to the blending of 50% biomass (PB50). However, the PB50 shows a higher LHV and CGE than pure coal by 12%and 18%, respectively. Overall, biomass blending of up to 50% favours gasification performance with an LHV of 12 MJ/kg and a CGE of 78%.


2020 ◽  
Vol 9 (1) ◽  
pp. 30-35
Author(s):  
Hendriyana Hendriyana

Rice husk is the waste from agriculture industries that has high potential to produce heat and electricity through the gasification process. Air suction mode is new development for updraft rice husk gasification, where blower are placed at output of gasifier. The objective of this research is to examine these new configuration at several equivalence ratio. The equivalence ratio was varied at 32% and 49% to study temperature profile on gasifier, producer gas volumetric flow rate, composition of producer gas, producer gas heating value, cold gas efficiency and carbon conversion. The time needed to consume rice husk and reach an oxidation temperature of more than 700oC for equivalence ratio of 49% is shorter than 32%. Producer gas rate production per unit weight of rice husk increase from  2.03 Nm3/kg and 2.36 Nm3/kg for equivalence ratio of 32% and 49%, respectively. Composition producer gas for equivalence ratio of 32% is 17.67% CO, 15.39% CO2, 2.87% CH4, 10.62% H2 and 53.45% N2 and 49% is 19.46% CO, 5.94% CO2, 0.90% CH4, 3.46% H2 and 70.24% N2. Producer gas heating value for equivalence ratio 32% and 49% is 4.73 MJ/Nm3 and 3.27 MJ/Nm3, respectively. Cold gas efficiency of the gasifier at equivalence ratio 32% is 69% and at 49% is 55%.


Sign in / Sign up

Export Citation Format

Share Document