scholarly journals Towards the Circular Economy of Rare Earth Elements: Lanthanum Leaching from Spent FCC Catalyst by Acids

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1369
Author(s):  
Corradino Sposato ◽  
Enrico Catizzone ◽  
Alessandro Blasi ◽  
Marilena Forte ◽  
Assunta Romanelli ◽  
...  

Rare earth elements (REEs) are strategic materials widely used in different applications from Information and Communication Technologies (ICT) to catalysis, which are expected to grow more in the future. In order to reduce the impact of market price and reduce the environmental effect from soil extraction, recovery/purification strategies should be exploited. This paper presents a combined acid-leaching/oxalate precipitation process to recover lanthanum from spent FCC catalyst using nitric acid. Preferred to hydrochloric and sulphuric acid (preliminary assessed), HNO3 showed a good capability to completely leach lanthanum. The combination with an oxalate precipitation step allowed demonstrating that a highly pure (>98% w/w) lanthanum solid can be recovered, with a neglectable amount of poisoning metals (Ni, V) contained into the spent catalyst. This could open a reliable industrial perspective to recover and purify REE in the view of a sustainable recycling strategy.

2016 ◽  
Vol 166 ◽  
pp. 195-204 ◽  
Author(s):  
Mugdha Walawalkar ◽  
Connie K. Nichol ◽  
Gisele Azimi

2008 ◽  
Vol 73 (4) ◽  
pp. 453-461
Author(s):  
Pavle Premovic ◽  
Maja Stankovic ◽  
Mirjana Pavlovic ◽  
Milos Djordjevic

Geochemical analyses of Zn, Pb and rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in the kerogen of the black marl at the Cretaceous - Paleogene boundary Fish Clay at H?jerup were performed. Substantial proportions of the Zn, Pb and rare earths were probably contained in terrestrial humic substances (the kerogen precursor) arriving at the marine sedimentary site. This is in accord with a previous hypothesis that kerogen is mainly derived from humic acids of an oxic soil in of the adjacent coastal areas of eastern Denmark. It is also suggested that humics enriched in Zn, Pb and rare earth elements were transported mainly through fluvial transport into the deposition site of the Fish Clay. Local weathering/leaching of the impact-eject fallout on the land surface and local terrestrial rocks by impact-induced? acid surface waters perhaps played an important role in providing Zn, Pb and rare earths to these humic substances. Apparently, chondritic and non-chondritic Zn originated from the impact fallout; Pb and rare earth elements were most likely sourced by exposed rocks in the coastal areas of eastern Denmark.


JOM ◽  
2019 ◽  
Vol 71 (12) ◽  
pp. 4578-4587 ◽  
Author(s):  
Seyed Ramin Banihashemi ◽  
Bijan Taheri ◽  
Seyed Mohammad Razavian ◽  
Faraz Soltani

2004 ◽  
Vol 824 ◽  
Author(s):  
S. I. Rovnyi ◽  
G. M. Medvedev ◽  
A. S. Aloy ◽  
T. I. Koltsova ◽  
S. E. Samoylov

AbstractOne of the high levels of actinide, and in particular Cm, waste streams at the Russian radiochemical Production Association (PA) Mayak was generated during spent fuel reprocessing. Using oxalate precipitation, the rare earth elements (REE) and transuranic elements (TRU) settled out in the form of oxalate residues. Due to in high REE contents in this residue, the mineral-like matrix based on (REE)PO4 solid solution, with monlclinic monazite structure have been proposed to use as a suitable ceramics form for final actinide immobilization. For this purpose the synthetic REE oxalates were first transformed into REE orthophosphates in a thin-film evaporator (TFE). Then the (REE)PO4 powder was compacted both by either hot uniaxial pressing (HUP) or cold uniaxial pressing followed by sintering (CUP). This ceramic with the monazite structure has a high density and exhibits chemical durability by leaching.


Minerals ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 63 ◽  
Author(s):  
Rina Kim ◽  
Heechan Cho ◽  
Kenneth Han ◽  
Kihong Kim ◽  
Myoungwook Mun

2018 ◽  
Vol 90 (1) ◽  
pp. 143-155 ◽  
Author(s):  
Natalia P. Tarasova ◽  
Anna S. Makarova ◽  
Stanislav F. Vinokurov ◽  
Vladimir A. Kuznetsov ◽  
Pavel I. Shlyakhov

AbstractThe methods to monitor the distribution of chemicals in the biosphere and to estimate the impact of chemicals on the biosphere are necessary to reach Sustainable Development Goals (SDGs). The paper presents the examples of methods to measure the concentration of heavy metals (including rare earth elements) and to rank them by the level of hazard to human health on different scales. The megacity scale presents the investigation of the impact of heavy metals on the small water bodies using water contamination index (WCI); and the investigation of snow contamination to estimate the level of short-term seasonal emission of heavy metals and rare earth elements. The 2nd part of the paper presents approaches to mitigate the exposure to mercury on the regional scale: the estimation of the current concentrations of mercury in atmospheric air, natural soils, and fresh waters using UNEP/SETAC USEtox model, as well as the estimations of the variations in the concentrations of mercury for the year 2045 in the federal districts of the Russian Federation, based on representative concentration pathways (RCPs) scenario and Minamata Convention scenario.


2022 ◽  
Vol 175 ◽  
pp. 107278
Author(s):  
Bin Ji ◽  
Qi Li ◽  
Rick Honaker ◽  
Wencai Zhang

2020 ◽  
Vol 11 (4) ◽  
pp. 804
Author(s):  
Iga Trisnawati ◽  
Gyan Prameswara ◽  
Panut Mulyono ◽  
Agus Prasetya ◽  
Himawan Tri Bayu Murti Petrus

2021 ◽  
Vol 266 ◽  
pp. 02002
Author(s):  
E.S. Lukyantseva ◽  
V.V. Sergeev

Currently, most high-technology productions are impossible without rare-earth elements (REE). The heavy rare-earth elements are of great interest as they have the highest market value and are in demand in the vast majority of knowledge-intensive industries. The main recourse of REE in Russia is apatite ore which is used in the production of fertilizers. As a result of its leaching, about 15-20% of REE goes to wet-process phosphoric acid. To enhance the depth of apatite processing, it is necessary to develop a technology which will allow obtaining rare-earth elements as by-products. The method of extraction and concentration of REE discussed in this paper was conducted by using the extractant based on di-(2-ethylhexyl) phosphoric acid (D2EHPA). The mechanism of extraction was studied, as well as the impact of the extractant concentration, phase ratio and the number of stages on the extraction process.


Sign in / Sign up

Export Citation Format

Share Document