scholarly journals Variable Neighborhood Strategy Adaptive Search for Optimal Parameters of SSM-ADC12 Aluminum Friction Stir Welding

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1805
Author(s):  
Suppachai Chainarong ◽  
Thanatkij Srichok ◽  
Rapeepan Pitakaso ◽  
Worapot Sirirak ◽  
Surajet Khonjun ◽  
...  

In this study, we present a new algorithm for finding the optimal friction stir welding parameters to maximize the tensile strength of a butt joint made of the semisolid material (SSM) ADC12 aluminum. The welding parameters were rotational speed, welding speed, tool tilt, tool pin profile, and rotational direction. The method presented is a variable neighborhood strategy adaptive search (VaNSAS) approach. The process of finding the optimal friction stir welding parameters comprises five steps: (1) identifying the type and range of friction stir parameters using a literature survey; (2) performing experiments according to (1); (3) constructing a regression model using the response surface method optimizer (RSM optimizer); (4) using VaNSAS to find the optimal parameters for the model obtained from (3); and (5) confirming the results from (4) using the parameter levels obtained from (4) to perform real experiments. The computational results revealed that the tensile strength generated from VaNSAS was 3.67% higher than the tensile strength obtained from the RSM optimizer parameters. The optimal parameters obtained from VaNSAS were a rotation speed of 2200 rpm, a welding speed of 108.34 mm/min, a tool tilt of 1.23 Deg, a tool pin profile of a hexagon, and a rotational direction of clockwise.

2021 ◽  
Vol 5 (4) ◽  
pp. 123
Author(s):  
Suppachai Chainarong ◽  
Rapeepan Pitakaso ◽  
Worapot Sirirak ◽  
Thanatkij Srichok ◽  
Surajet Khonjun ◽  
...  

This research presents a novel algorithm for finding the most promising parameters of friction stir welding to maximize the ultimate tensile strength (UTS) and maximum bending strength (MBS) of a butt joint made of the semi-solid material (SSM) ADC12 aluminum. The relevant welding parameters are rotational speed, welding speed, tool tilt, tool pin profile, and rotation. We used the multi-objective variable neighborhood strategy adaptive search (MOVaNSAS) to find the optimal parameters. We employed the D-optimal to find the regression model to predict for both objectives subjected to the given range of parameters. Afterward, we used MOVaNSAS to find the Pareto front of the objective functions, and TOPSIS to find the most promising set of parameters. The computational results show that the UTS and MBS of MOVaNSAS generate a 2.13% to 10.27% better solution than those of the genetic algorithm (GA), differential evolution algorithm (DE), and D-optimal solution. The optimal parameters obtained from MOVaNSAS were a rotation speed of 1469.44 rpm, a welding speed of 80.35 mm/min, a tool tilt of 1.01°, a cylindrical tool pin profile, and a clockwise rotational direction.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1080
Author(s):  
Thanatkij Srichok ◽  
Rapeepan Pitakaso ◽  
Kanchana Sethanan ◽  
Worapot Sirirak ◽  
Parama Kwangmuang

In this study, we constructed a new algorithm to determine the optimal parameters for friction stir welding including rotational speed, welding speed, axial force, tool pin profile, and tool material. The objective of welding is to maximize the ultimate tensile strength of the welded aluminum. The proposed method combines the response surface method and the modified differential evolution algorithm (RSM-MDE). RSM-MDE is a method that involves both experimental and simulation procedures. It is composed of four steps: (1) finding the number of parameters and their levels that affect the efficiency of the friction stir welding, (2) using RSM to formulate the regression model, (3) using the MDE algorithm to find the optimal parameter of the regression model obtained from (2), and (4) verifying the results obtained from step (3). The optimal parameters generated by the RSM-MDE method were a rotation speed of 1417.68 rpm, a welding speed of 60.21 mm/min, an axial force of 8.44 kN, a hexagon-tapered tool pin profile, and the SKD 11 tool material. The ultimate tensile strength obtained from this set of parameters was 294.84 MPa, which was better than that of the RSM by 1.48%.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2011 ◽  
Vol 415-417 ◽  
pp. 1140-1146 ◽  
Author(s):  
R. Palanivel ◽  
P. Koshy Mathews ◽  
M. Balakrishnan ◽  
I. Dinaharan ◽  
N. Murugan

Aluminium alloys generally has low weldability by traditional fusion welding process. The development of the Friction Stir Welding (FSW) has provided an alternative improved way of producing aluminium joints, in a faster and reliable manner. FSW process has several advantages, in particular the possibility to weld dissimilar aluminium alloys. This study focuses on the behavior of tensile strength of dissimilar joints of AA6351-T6 alloy to AA5083-H111 alloy produced by friction stir welding was analysed. Five different tool pin profile such as Straight Square (SS), Tapered Square (TS), Straight Hexagon (SH), Straight Octagon (SO) and Tapered Octagon (TO) with three different axial force (1tonne, 1.5tonne, 2 tonne) have been used to weld the joints. The effect of pin profiles and axial force on tensile properties and material flow behaviour of the joint was analyzed and it was found that the straight square pin profile with 1.5 tonne produced better tensile strength then other tool pin profile and axial force.


2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


Author(s):  
Sanjay Kumar ◽  
Sudhir Kumar ◽  
Ajay Kumar

The friction stir welding is a pioneering solid-state metal joining technique for producing high-quality joints in materials. In this article, Taguchi approach is applied to analyze the optimal process parameters for optimum tensile strength and hardness of welded dissimilar A6061 and A6082 alloys. An orthogonal array of L9 is implemented and the analysis of variance is employed to investigate the importance of parameters on responses. The experimental tests, conducted according to combination of rotational speed, tool tilt and types of tool pin profile parameters. The results indicate that the rotational speed is most significant process parameter that has the highest influence on tensile strength and hardness, followed by tool pin profile and tool tilt. The optimum results verified by conducting confirmation experiments. The predicted optimal value of tensile strength and hardness of dissimilar joints produced by friction stir welding are 267.74 MPa and 80.55 HRB, respectively.


2014 ◽  
Vol 61 (3) ◽  
pp. 455-468
Author(s):  
Hiralal Subhash Patil ◽  
Sanjay N. Soman

Abstract Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal) have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.


2018 ◽  
Vol 26 (4) ◽  
pp. 1-17
Author(s):  
Samir Ali Amin ◽  
Mohannad Yousif Hanna ◽  
Alhamza Farooq Mohamed

Bobbin friction stir welding (BFSW) is special kind of friction stir welding. This investigation aims to develop empirical models through mathematical relationships between the welding process parameters and mechanical properties of Aluminum alloy AA6061-T6 welded joint created by using bobbin tool and to find the optimum welding parameters. The welding speed range (40-200 mm/min) and rotational speed range (340-930 rpm) were utilized (as the used input factors) to find their effects on elongation, tensile strength and maximum bending force as the main responses.  These models were built using Design of Experiment (DOE) software ‘version 10’ with Response Surface Methodology (RSM) technique. The models adequacy were tested via the (ANOVA) analysis. The obtained models appeared that as the welding speed or rotational speed increases, the elongation, tensile strength and maximum bending force of the welded joint firstly rise to a maximum value and then drop. The optimum welding parameters were rotational speed (623.949 rpm) and welding speed (128.795 mm/min) with (6.33%), (204 MPa) and (6.216 KN) of elongation, tensile strength and maximum bending force, respectively. A proper harmonization was obtained between the models predicted results and the optimized ones with actual trial with 95% level of confidence.


Sign in / Sign up

Export Citation Format

Share Document