scholarly journals Testing the PTT Rheological Model for Extrusion of Virgin and Composite Materials in View of Enhanced Conductivity and Mechanical Recycling Potential

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1969
Author(s):  
Mariya Edeleva ◽  
Dahang Tang ◽  
Tom Van Waeleghem ◽  
Flávio H. Marchesini ◽  
Ludwig Cardon ◽  
...  

One of the challenges for the manufacturing processes of polymeric parts is the dedicated control of composite melt flow. In the present work, the predictive capability of the Phan-Thien-Tanner (PTT) viscoelastic model is evaluated in relation to the extrudate swell from slit dies at 200 °C, considering polypropylene and graphite filler, and applying ANSYS Polyflow software. It is shown that for sufficiently low filler amounts (below 10%; volumetric) the PTT accurately reflects the viscoelastic interactions, but at higher filler amounts too large swellings are predicted. One can although obtain insights on the swelling in the height direction and consider a broader range of swelling areas compared to virgin materials. Guidelines are also provided for future experiments and model development, including the omission of the no-slip process boundary condition.

Author(s):  
Hadj Youzera ◽  
Sid Ahmed Meftah ◽  
El Mostafa Daya

General differential equations of motion in nonlinear forced vibration analysis of multilayered composite beams are derived by using the higher-order shear deformation theories (HSDT's). Viscoelastic properties of fiber-reinforced plastic composite materials are considered according to the Kelvin–Voigt viscoelastic model for transversely isotropic composite materials. The method of multiple scales is employed to perform analytical frequency amplitude relationships for superharmonic resonance. Parametric study is conducted by considering various geometrical and material parameters, employing HSDT's and first-order deformation theory (FSDT).


2021 ◽  
Author(s):  
Justyna Rybicka ◽  
Teresa Purse ◽  
Brett Parlour

Cost estimation helps build confidence in the feasibility of the development of novel manufacturing processes. This paper focuses on the exploration of the cost estimation for novel manufacturing processes for decision support. One of the aspects of estimation is building credibility around the analysis, especially, in the early stages of planning. Cost estimating guidelines provide a good overview of the cost estimation steps but there is a requirement for guidelines for cost estimation model development. Through building on an understanding of the cost estimation principles, as well as cost estimation modelling, a high-level generic approach for process cost estimation is proposed. Further, a demonstration of a cost estimation modelling approach used for composites manufacturing in the automotive sector is provided, outlining the steps in cost estimation model development.


2021 ◽  
Vol 2 (01) ◽  
pp. 13-23
Author(s):  
Md. Maruf Billah ◽  
Md. Sanaul Rabbi ◽  
Afnan Hasan

From the last few decades, the study of natural fiber composite materials has been gaining strong attention among researchers, scientists, and engineers. Natural fiber composite materials are becoming good alternatives to conventional materials because of their lightweight, high specific strength, low thermal expansion, eco-friendly, low manufacturing cost, nonabrasive and bio-degradable characteristics. It is proven that natural fiber is a great alternative to synthetic fiber in the sector of automobiles, railway, and aerospace. Researchers are developing various types of natural fiber-reinforced composites by combining different types of natural fiber such as jute, sisal, coir, hemp, abaca, bamboo, sugar can, kenaf, banana, etc. with various polymers such as polypropylene, epoxy resin, etc. as matrix material. Based on the application and required mechanical and thermal properties, numerous natural fiber-based composite manufacturing processes are available such as injection molding, compression molding, resin transfer molding, hand lay-up, filament welding, pultrusion, autoclave molding, additive manufacturing, etc. The aim of the paper is to present the developments of various manufacturing processes of natural fiber-based composites and obtained mechanical properties.


2013 ◽  
Vol 29 (4) ◽  
pp. 675-683 ◽  
Author(s):  
P.-J. Lin

ABSTRACTThis paper proposes a three-phase constitutive model for estimating the elastic moduli and strength of granular composite. The three-phase granular composite material containing aggregate (inclusion), matrix, and aggregate/matrix interface were investigated in this study. It was observed that significant improvement in predictive capability for three-phase granular composite materials can be achieved by using the proposed method. By using micromechanics and adopting the double-inclusion concept initiated by Hori and Nemat-Nasser and the two-phase model introduced by Yang et al.; the predicted elastic moduli for three-phase granular composite materials were evaluated. Moreover, analytical formulas were obtained to predict the strengths of three-phase granular composite materials. The potential of the proposed framework was also explored by comparing the analytical predictions in this study with other analytical methods as well as experimental data of other studies.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 196
Author(s):  
Lynn Trossaert ◽  
Matthias De Vel ◽  
Ludwig Cardon ◽  
Mariya Edeleva

Sustainability and recyclability are among the main driving forces in the plastics industry, since the pressure on crude oil resources and the environment is increasing. The aim of this research is to develop a sustainable thermoformable multilayer food packaging, based on co-polyesters, which is suitable for hot-fill applications and allows for recycling in a conventional waste stream. As a polymer material for the outer layer, we selected a modified polyethylene terephthalate (PETM), which is an amorphous co-polyester with a high glass transition temperature (±105 °C) and thus high thermal stability and transparency. The inner layer consists of 1,4-cyclohexylene dimethanol-modified polyethylene terephthalate (PETg), which is allowed to be recycled in a PET stream. Multilayers with a total thickness of 1 mm and a layer thickness distribution of 10/80/10 have been produced. To test the recyclability, sheets which contained 20% and 50% regrind of the initial multilayer in their middle PETg layer have been produced as well. The sheet produced from virgin pellets and the one containing 20% regrind in the middle layer showed no visible haze. This was not the case for the one containing 50% regrind in the middle layer, which was confirmed by haze measurements. The hot-fill test results showed no shrinkage or warpage for the multilayer trays for all temperatures applied, namely 95, 85, 75 and 65 °C. This is a remarkable improvement compared to pure PETg trays, which show a visible deformation after exposure to hot-fill conditions of 95 °C and 85 °C.


Sign in / Sign up

Export Citation Format

Share Document