scholarly journals Validating Physiological and Biomechanical Parameters during Continuous Swimming at Speed Corresponding to Lactate Threshold

Proceedings ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 4
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

AIM: The purpose of this study was to validate the physiological responses and biomechanical parameters during continuous swimming at intensity corresponding to lactate threshold previously calculated by an intermittent, progressively increasing speed test (7 × 200-m). MATERIAL & METHOD: Nine competitive male and female swimmers (age, 19.2 ± 2.3 years; height, 175.3 ± 7.5 cm; body mass, 67.6 ± 8.7 kg; VO2max, 46.5 ± 15.6 mL/kg/min) performed a 7 × 200-m front crawl test reaching maximum speed in the last effort. Blood lactate concentration (BL) and oxygen uptake (VO2) were determined after each repetition, while heart rate (HR) was recorded continuously. Stroke rate (SR) and stroke length (SL) were measured in each 200-m effort. The speed at lactate threshold (sLT) was calculated using the individual speed vs. BL, and subsequently BL, VO2, HR, SR, and SL corresponding to sLT were calculated (BL-sLT, VO2-sLT, HR-sLT, SR-sLT, and SL-sLT). On a subsequent day, swimmers performed 30-min continuous swimming (T30) with a constant speed corresponding to sLT. BL, V02, HR, SR, and SL (BL-T30, V02-T30, HR-T30, SR-T30, and SL-T30) were measured in the 10th and 30th minutes of the T30 test, and the mean values were used for the statistical analysis. RESULTS: The speed corresponding to sLT was not different from the speed at T30 (1.33 ± 0.08 vs. 1.32 ± 0.09 m/s, p > 0.05). There was no difference between tests in VO2 (VO2-sLT, 34.9 ± 13.3 vs. VO2-T30, 32.1 ± 11.4 ml/kg/min, p = 0.47). However, not all swimmers were able to complete T30 at sLT, and BL, HR, and SR were higher, while SL was lower at the end of T30 compared to sLT (BL-sLT, 3.47 ± 0.60 mmol/L vs. BL-T30, 5.28 ± 3.15 mmol/L, p = 0.05; HR-sLT, 163 ± 10 vs. HR-T30, 171 ± 11 b/min, p = 0.03; SR-sLT, 28.0 ± 4.0 vs. SR-T30, 33.8 ± 3.2 strokes/min, p < 0.001; SL-sLT, 2.6 ± 0.4 vs. SL-T30, 2.4 ± 0.3 m/cycles, p < 0.001). A Bland-and-Altman plot indicated agreement between 7 × 200 and T30 in BL (bias 1.8 ± 2.4 mmol/L), VO2 (bias −2.9 ± 11.4 ml/kg/min), HR (bias 10.3 ± 12 b/min), SR (bias 5.3 ± 3.4 strokes/min), and SL (bias −0.3 ± 0.2 m/cycle), but the range of physiological and biomechanical data variations was large. CONCLUSIONS: Continuous swimming at speed corresponding to lactate threshold may not show the same physiological and biomechanical responses as those predicted by a progressively increasing speed test of 7 × 200-m.

Sports ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 95
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

The purpose of this study was to verify the physiological responses and biomechanical parameters measured during 30 min of continuous swimming (T30) at intensity corresponding to lactate threshold previously calculated by an intermittent progressively increasing speed test (7 × 200 m). Fourteen competitive swimmers (18.0 (2.5) years, 67.5 (8.8) kg, 174.5 (7.7) cm) performed a 7 × 200 m front crawl test. Blood lactate concentration (BL) and oxygen uptake (VO2) were determined after each 200 m repetition, while heart rate (HR), arm-stroke rate (SR), and arm-stroke length (SL) were measured during each 200 m repetition. Using the speed vs. lactate concentration curve, the speed at lactate threshold (sLT) and parameters corresponding to sLT were calculated (BL-sLT, VO2-sLT, HR-sLT, SR-sLT, and SL-sLT). In the following day, a T30 corresponding to sLT was performed and BL-T30, VO2-T30, HR-T30, SR-T30, and SL-T30 were measured after the 10th and 30th minute, and average values were used for comparison. VO2-sLT was no different compared to VO2-T30 (p > 0.05). BL-T30, HR-T30, and SR-T30 were higher, while SL-T30 was lower compared to BL-sLT, HR-sLT, SR-sLT, and SL-sLT (p < 0.05). Continuous swimming at speed corresponding to lactate threshold may not show the same physiological and biomechanical responses as those calculated by a progressively increasing speed test of 7 × 200 m.


Proceedings ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 15
Author(s):  
Arsoniadis ◽  
Nikitakis ◽  
Botonis ◽  
Malliaros ◽  
Toubekis

AIM: progressively increasing swimming speed test (5 × 200 m) is used to calculate the speed corresponding to blood lactate concentration of 4 mmol/L (V4) and related physiological and biomechanical parameters. The purpose of this study was to compare the calculated by a 5 × 200-m test parameters with those obtained during an intermittent swimming training set (5 × 400-m) performed at constant speed corresponding to V4. MATERIAL & METHOD: Twelve competitive male swimmers (age, 19 ± 2 years; height, 178 ± 8 cm; body mass, 74.4 ± 10.1 kg) performed a 5 × 200-m front crawl test reaching maximum speed in the last effort. Blood lactate concentration (BL) was measured after each 200 m, and heart rate (HR), stroke rate (SR), and stroke length (SL) were determined during each 200 m. V4 was calculated by interpolation using the individual speed vs. BL, and subsequently HR, SR, SL corresponding to V4 were calculated (HR-V4, SR-V4, SL-V4). One week later, swimmers performed 5 × 400-m at constant speed corresponding to V4. During the 5 × 400-m test, BL (BL-5 × 400) was measured after the 1st, 3rd and 5th repetitions, while HR (HR-5 × 400) was recorded continuously. SR and SL were measured in each 400-m repetition, and mean values were calculated (SR-5 × 400 and SL-5 × 400). RESULTS: V4 and HR-V4 were not different from speed and HR-5 × 400 during the 5 × 400-m test (1.30 ± 0.10 vs. 1.29 ± 0.10 m/s; 160 ± 14 vs. 166 ± 13 b/min, both p > 0.05). BL-5 × 400 was not different from 4 mmol/L (4.9 ± 2.6 mmol/L, p > 0.05). SR was increased and SL was decreased during 5 × 400 m compared to the values corresponding to V4 (SR-V4, 28.9 ± 3.8 vs. SR-5 × 400, 34.5 ± 3.4 strokes/min; SL-V4, 2.38 ± 0.33 vs. SL-5 × 400, 2.25 ± 0.30 m/cycle, both p < 0.05). A Bland-and-Altman plot indicated agreement between variables obtained by the 5 × 200-m and 5 × 400-m tests but with great range of variation (bias: BL, −1.0 ± 2.6 mmol/L; HR, −7 ± 12 b/min; SR, −5.6 ± 3.3 strokes/min; SL, 0.13 ± 0.09 m/cycle). CONCLUSIONS: An intermittent, with progressively increasing speed, swimming test provides physiological information to coaches to apply during an intermittent constant-speed swimming training set at intensity corresponding to BL of 4 mmol/L with large inter-individual variability. It seems that the 5 × 200-m test does not provide valid results for the biomechanical parameters.


Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

Background: Physiological and biomechanical parameters obtained during testing need validation in a training setting. The purpose of this study was to compare parameters calculated by a 5 × 200-m test with those measured during an intermittent swimming training set performed at constant speed corresponding to blood lactate concentration of 4 mmol∙L−1 (V4). Methods: Twelve competitive swimmers performed a 5 × 200-m progressively increasing speed front crawl test. Blood lactate concentration (BL) was measured after each 200 m and V4 was calculated by interpolation. Heart rate (HR), rating of perceived exertion (RPE), stroke rate (SR) and stroke length (SL) were determined during each 200 m. Subsequently, BL, HR, SR and SL corresponding to V4 were calculated. A week later, swimmers performed a 5 × 400-m training set at constant speed corresponding to V4 and BL-5×400, HR-5×400, RPE-5×400, SR-5×400, SL-5×400 were measured. Results: BL-5×400 and RPE-5×400 were similar (p > 0.05), while HR-5×400 and SR-5×400 were increased and SL-5×400 was decreased compared to values calculated by the 5 × 200-m test (p < 0.05). Conclusion: An intermittent progressively increasing speed swimming test provides physiological information with large interindividual variability. It seems that swimmers adjust their biomechanical parameters to maintain constant speed in an aerobic endurance training set of 5 × 400-m at intensity corresponding to 4 mmol∙L−1.


2017 ◽  
Vol 10 (1) ◽  
pp. 214-221 ◽  
Author(s):  
Gavriil G. Arsoniadis ◽  
Petros G. Botonis ◽  
Ioannis S. Nikitakis ◽  
Dimitrios Kalokiris ◽  
Argyris G. Toubekis

Background: The magnitude of long-term changes on aerobic endurance indices provides useful information for understanding any training-induced adaptation during maturation. Objective: The aim of the present study was to compare changes in different aerobic endurance indices within two successive training years. Methods: Eight swimmers, (five male, three female; age: 14.1±1.5, height: 163.8±9.9 cm, body mass: 55.8±10 kg) were tested at four time-points, before and after the 12-week specific preparation period, within two successive training years (at year-1: start-1, end-1, at year-2: start-2, end-2). In each time-point were timed in distances of 50, 200 and 400 m front crawl to calculate the critical speed (CS). Subsequently, performed 5x200 m front crawl progressively increasing intensity and the lactate concentration was determined after each repetition. Using the individual speed vs. lactate concentration curve, the speed corresponding to 4 mmol.L-1 concentration (V4) and the speed corresponding to lactate threshold (sLT) were calculated. Results: Aerobic endurance was increased from year-1 to year-2 (effect of time, p<0.05) and no difference was observed between V4, sLT and CS at all time-points of evaluation (p>0.05). In year-1, V4, sLT and CS were unchanged even after the 12-week period (p>0.05). During year-2 of training it was only V4 that was increased from start-2 to end-2 (p<0.05), whereas sLT and CS were unchanged at the same period (p>0.05). Conclusion: The aerobic endurance indices change similarly throughout a two-year training, independent of the maturation. Possibly, V4 is more sensitive to detect training adaptations during the specific preparation period in young swimmers.


2020 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Daniel A. Marinho ◽  
Maria I. Ferreira ◽  
Tiago M. Barbosa ◽  
José Vilaça-Alves ◽  
Mário J. Costa ◽  
...  

Background: The current study aimed to verify the changes in performance, physiological and biomechanical variables throughout a season in master swimmers. Methods: Twenty-three master swimmers (34.9 ± 7.4 years) were assessed three times during a season (December: M1, March: M2, June: M3), in indoor 25 m swimming pools. An incremental 5 × 200 m test was used to evaluate the speed at 4 mmol·L−1 of blood lactate concentration (sLT), maximal oxygen uptake (VO2max), peak blood lactate ([La-]peak) after the test, stroke frequency (SF), stroke length (SL), stroke index (SI) and propelling efficiency (ηp). The performance was assessed in the 200 m front crawl during competition. Results: Swimming performance improved between M1, M2 (2%, p = 0.03), and M3 (4%, p < 0.001). Both sLT and VO2max increased throughout the season (4% and 18%, p < 0.001, respectively) but not [La-]peak. While SF decreased 5%, SL, SI and ηp increased 5%, 7%, and 6% (p < 0.001) from M1 to M3. Conclusions: Master swimmers improved significantly in their 200 m front crawl performance over a season, with decreased SF, and increased SL, ηp and SI. Despite the improvement in energetic variables, the change in performance seemed to be more dependent on technical than energetic factors.


2019 ◽  
Vol 70 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Yuki Funai ◽  
Masaru Matsunami ◽  
Shoichiro Taba

Abstract The aim of this study was to examine how arm stroke swimming with critical stroke rate (CSR) control would influence physiological responses and stroke variables in an effort to identify a new swimming training method. Seven well-trained male competitive swimmers (19.9 ± 1.4 years of age) performed maximal 200 and 400 m front crawl swims to determine the CSR and critical swimming velocity (CV), respectively. Thereafter, they were instructed to perform tests with 4 × 400 m swimming bouts at the CSR and CV. The swimming time (CSR test: 278.96 ± 2.70 to 280.87 ± 2.57 s, CV test: 276.17 ± 3.36 to 277.06 ± 3.64 s), heart rate, and rated perceived exertion did not differ significantly between tests for all bouts. Blood lactate concentration after the fourth bout was significantly lower in the CSR test than in the CV test (3.16 ± 1.43 vs. 3.77 ± 1.52 mmol/l, p < 0.05). The stroke rate and stroke length remained stable across bouts in the CSR test, whereas the stroke rate increased with decreased stroke length across bouts in the CV test (p < 0.05). There were significant differences in the stroke rate (39.27 ± 1.22 vs. 41.47 ± 1.22 cycles/min, p < 0.05) and stroke length (2.20 ± 0.07 vs. 2.10 ± 0.04 m/stroke, p < 0.05) between the CSR and CV tests in the fourth bout. These results indicate that the CSR could provide the optimal intensity for improving aerobic capacity during arm stroke swimming, and it may also help stabilize stroke technique.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tong Zhao ◽  
Shenglong Le ◽  
Nils Freitag ◽  
Moritz Schumann ◽  
Xiuqiang Wang ◽  
...  

Purpose: To assess the effect of chronic exercise training on blood lactate metabolism at rest (i.e., basal lactate concentrations) and during exercise (i.e., blood lactate concentration at a fixed load, load at a fixed blood lactate concentration, and load at the individual blood lactate threshold) among patients with type 2 diabetes mellitus (T2DM).Methods: PubMed (MedLine), Embase, Web of Science, and Scopus were searched. Randomized controlled trials, non-randomized controlled trials, and case-control studies using chronic exercise training (i.e., 4 weeks) and that assessed blood lactate concentrations at rest and during exercise in T2DM patients were included.Results: Thirteen studies were eligible for the systematic review, while 12 studies with 312 participants were included into the meta-analysis. In the pre-to-post intervention meta-analysis, chronic exercise training had no significant effect on changes in basal blood lactate concentrations (standardized mean difference (SMD) = −0.20; 95% CI, −0.55 to 0.16; p = 0.28), and the results were similar when comparing the effect of intervention and control groups. Furthermore, blood lactate concentration at a fixed load significantly decreased (SMD = −0.73; 95% CI, −1.17 to −0.29; p = 0.001), while load at a fixed blood lactate concentration increased (SMD = 0.40; 95% CI, 0.07 to 0.72; p = 0.02) after chronic exercise training. No change was observed in load at the individual blood lactate threshold (SMD = 0.28; 95% CI, −0.14 to 0.71; p = 0.20).Conclusion: Chronic exercise training does not statistically affect basal blood lactate concentrations; however, it may decrease the blood lactate concentrations during exercise, indicating improvements of physical performance capacity which is beneficial for T2DM patients' health in general. Why chronic exercise training did not affect basal blood lactate concentrations needs further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Seki ◽  
Daisuke Nakashima ◽  
Yasuyuki Shiraishi ◽  
Toshinobu Ryuzaki ◽  
Hidehiko Ikura ◽  
...  

AbstractThe lactate threshold (LT1), which is defined as the first rise in lactate concentration during incremental exercise, has not been non-invasively and conveniently determined in a clinical setting. We aimed to visualize changes in lactate concentration in sweat during exercise using our wearable lactate sensor and investigate the relationship between the lactate threshold (LT1) and ventilatory threshold (VT1). Twenty-three healthy subjects and 42 patients with cardiovascular diseases (CVDs) were enrolled. During exercise, the dynamic changes in lactate values in sweat were visualized in real-time with a sharp continuous increase up to volitional exhaustion and a gradual decrease during the recovery period. The LT1 in sweat was well correlated with the LT1 in blood and the VT1 (r = 0.92 and 0.71, respectively). In addition, the Bland–Altman plot described no bias between the mean values (mean differences: − 4.5 and 2.5 W, respectively). Continuous monitoring of lactate concentrations during exercise can provide additional information for detecting the VT1.


2006 ◽  
Vol 31 (5) ◽  
pp. 612-620 ◽  
Author(s):  
Lixin Wang ◽  
Takahiro Yoshikawa ◽  
Taketaka Hara ◽  
Hayato Nakao ◽  
Takashi Suzuki ◽  
...  

Various near-infrared spectroscopy (NIRS) variables have been used to estimate muscle lactate threshold (LT), but no study has determined which common NIRS variable best reflects muscle estimated LT. Establishing the inflection point of 2 regression lines for deoxyhaemoglobin (ΔHHbi.p.), oxyhaemoglobin (ΔO2Hbi.p.), and tissue oxygenation index (TOIi.p.), as well as for blood lactate concentration, we then investigated the relationships between NIRS variables and ventilatory threshold (VT), LT, or maximal tissue hemoglobin index (nTHImax) during incremental cycling exercise. ΔHHbi.p. and TOIi.p. could be determined for all 15 subjects, but ΔO2Hbi.p. was determined for only 11 subjects. The mean absolute values for the 2 measurable slopes of the 2 continuous linear regression lines exhibited increased changes in 3 NIRS variables. The workload and VO2 at ΔO2Hbi.p. and nTHImax were greater than those at VT, LT, ΔHHbi.p., and TOIi.p.. For workload and VO2, ΔHHbi.p. was correlated with VT and LT, whereas ΔO2Hbi.p. was correlated with nTHImax, and TOIi.p. with VT and nTHImax. These findings indicate that ΔO2Hb strongly corresponds with local perfusion, and TOI corresponds with both local perfusion and deoxygenation, but that ΔHHb can exactly determine deoxygenation changes and reflect O2 metabolic dynamics. The finding of strongest correlations between ΔHHb and VT or LT indicates that ΔHHb is the best variable for muscle LT estimation.


2016 ◽  
Vol 53 (1) ◽  
pp. 179-187 ◽  
Author(s):  
José Vilaça-Alves ◽  
Nuno Miguel Freitas ◽  
Francisco José Saavedra ◽  
Christopher B. Scott ◽  
Victor Machado dos Reis ◽  
...  

AbstractThe aim of this study was to compare the values of oxygen uptake (VO2) during and after strength training exercises (STe) and ergometer exercises (Ee), matched for intensity and exercise time. Eight men (24 ± 2.33 years) performed upper and lower body cycling Ee at the individual’s ventilatory threshold (VE/VCO2). The STe session included half squats and the bench press which were performed with a load at the individual blood lactate concentration of 4 mmol/l. Both sessions lasted 30 minutes, alternating 50 seconds of effort with a 10 second transition time between upper and lower body work. The averaged overall VO2 between sessions was significantly higher for Ee (24.96 ± 3.6 ml·kg·min-1) compared to STe (21.66 ± 1.77 ml·kg·min-1) (p = 0.035), but this difference was only seen for the first 20 minutes of exercise. Absolute VO2 values between sessions did not reveal differences. There were more statistically greater values in Ee compared to STe, regarding VO2 of lower limbs (25.44 ± 3.84 ml·kg·min-1 versus 21.83 ± 2·24 ml·kg·min-1; p = 0.038) and upper limbs (24.49 ± 3.84 ml·kg·min-1 versus 21.54 ± 1.77 ml·kg·min-1; p = 0.047). There were further significant differences regarding the moment effect (p<0.0001) of both STe and Ee sessions. With respect to the moment × session effect, only VO2 5 minutes into recovery showed significant differences (p = 0.017). In conclusion, although significant increases in VO2 were seen following Ee compared to STe, it appears that the load/intensity, and not the material/equipment used for the execution of an exercise, are variables that best influence oxygen uptake.


Sign in / Sign up

Export Citation Format

Share Document