scholarly journals Transparent Wearable Sensor for Early Extravasation Detection

Proceedings ◽  
2020 ◽  
Vol 56 (1) ◽  
pp. 8
Author(s):  
Hsuan-Chin Lu ◽  
Ying-Chih Liao

In this work, we present a wearable sensor patch for the early detection of extravasation by using a simple, direct printing process. Interdigitated electrodes are printed on a flexible film, which can be attached to skin. The electrodes are integrated with a top electrode to form a flexible pressure-sensing device utilizing an electrical contact resistance (ECR) variation mechanism. The detector possesses good sensitivity and a low detection limit for pressure variation. By adjusting the printing parameters, sensors of millimeter size can be fabricated and allow the potential for multiple detection points in a large area. In addition, by using silver nanowire inks, the sensor becomes nearly transparent to prevent patients’ panic. The possibility and feasibility of this device for early extravasation detection is also evaluated.

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2583
Author(s):  
Hsuan-Chin Lu ◽  
Ying-Chih Liao

In this study, we presented a wearable sensor patch for the early detection of extravasation by using a simple, direct printing process. Silver nanowire (AgNW) ink was first formulated to provide necessary rheological properties to print patterns on flexible plastic sheets. By adjusting printing parameters, alignments of AgNWs in the printed patterns were controlled to enhance the resistance change under stretching conditions. A resistive strain-sensing device was then fabricated by printing patterned electrodes on a stretchable film for skin attachment. The designed sensor pattern was able to detect forces from a specific direction from the resistance change. Moreover, the sensor showed excellent sensitivity (gauge factor (GF) = 100 at 50% strain) and could be printed in small dimensions. Sensors of millimeter size were printed in an array and were used for multiple detection points in a large area to detect extravasation at small volumes (<0.5 mL) at accurate bump location.


NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550118 ◽  
Author(s):  
Lei Wang ◽  
Jing Wen ◽  
CiHui Yang ◽  
Shan Gai ◽  
YuanXiu Peng

Phase-change probe memory using Ge2Sb2Te5 has been considered as one of the promising candidates as next-generation data storage device due to its ultra-high density, low energy consumption, short access time and long retention time. In order to utmostly mimic the practical setup, and thus fully explore the potential of phase-change probe memory for 10 Tbit/in2 target, some advanced modeling techniques that include threshold-switching, electrical contact resistance, thermal boundary resistance and crystal nucleation-growth, are introduced into the already-established electrothermal model to simulate the write and read performance of phase-change probe memory using an optimal media stack design. The resulting predictions clearly demonstrate the capability of phase-change probe memory to record 10 Tbit/in2 density under pico Joule energy within micro second period.


2016 ◽  
Vol 108 (18) ◽  
pp. 181903 ◽  
Author(s):  
Gaurav Singh ◽  
R. L. Narayan ◽  
A. M. Asiri ◽  
U. Ramamurty

1987 ◽  
Vol 109 (4) ◽  
pp. 587-591 ◽  
Author(s):  
M. Suzuki ◽  
K. C. Ludema

Steel cylinders were slid against flat steel disks, using a liquid lubricant, in order to study the progression of events associated with “running-in.” It was found that, when using mineral oil, the electrical contact resistance varied over a small range of high values indicating no metallic contact, whereas with engine oil a high resistance with an intermittent negligible contact resistance was found. A surface film forms from the additives in the engine oil which produces lower wear, slightly higher friction, a retarded running-in, and a rougher surface finish in the direction of sliding than does the mineral oil. A film which is composed only of Fe3O4 is formed when mineral oil is used. In addition, the mineral oil lubricated surfaces develop a conforming waviness across the sliding tracks. The oxide must have enhanced this surface conformity since it was not seen in the surfaces lubricated with engine oil. The role of the oxide may be further seen in experiments in which wear debris that accumulated in the entrance region of specimen contact was removed at frequent intervals. Little conforming waviness was seen in the latter case, suggesting that oxide which gathered in the entrance region abraded grooves in the steel surfaces. After the oxides were dislodged the friction increased and the contact resistance decreased for a time, indicating that the oxide acted like a solid lubricant.


Sign in / Sign up

Export Citation Format

Share Document