scholarly journals Concave Diffraction Gratings by High-Precision Injection Moulding

Proceedings ◽  
2019 ◽  
Vol 2 (13) ◽  
pp. 717
Author(s):  
Manuel Walch ◽  
Alexander Wörle

As an example of the applicable process chain, a concave grating (1175 grooves/mm) with an active area of approx. 24 mm to 24 mm has been replicated by means of electroplating and further by injection moulding with polycarbonate, resulting in a surface accuracy even below 4 µm peak-to-valley (PV). The obtained moulds were further metallised with bare aluminium to obtain components for optical applications. To our knowledge, this is the first time that such a large nanostructured nonplanar surface has been manufactured by injection moulding in such an accuracy.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Denis V. Novitsky ◽  
Dmitry Lyakhov ◽  
Dominik Michels ◽  
Dmitrii Redka ◽  
Alexander A. Pavlov ◽  
...  

AbstractUnique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.


1998 ◽  
Vol 11 (1) ◽  
pp. 583-583
Author(s):  
S. Röser ◽  
U. Bastian ◽  
K.S. de Boer ◽  
E. Høg ◽  
E. Schilbach ◽  
...  

DIVA (Double Interferometer for Visual Astrometry) is a Fizeau interferometer on a small satellite. It will perform astrometric and photometric observations of at least 4 million stars. A launch in 2002 and a minimum mission length of 24 months are aimed at. A detailed description of the experiment can be obtained from the DIVA homepage at http://www.aip.de:8080/᷉dso/diva. An overview is given by Röser et al., 1997. The limiting magnitude of DIVA is about V = 15 for spectral types earlier than M0, but drops to about V = 17.5 for stars later than M5. Table 1 gives a short overview on DIVA’s performance. DIVA will carry out a skysurvey complete to V = 12.5. For the first time this survey will comprise precise photometry in at least 8 bands in the wavelength range from 400 to 1000 nm. DIVA will improve parallaxes by a factor of 3 compared to Hipparcos; proper motions by at least a factor of 2 and, in combination with the Hipparcos observations, by a factor of 10 for Hipparcos stars. At least 30 times asmany stars as Hipparcos will be observed, and doing this DIVA will fill the gap in observations between Hipparcos and GAIA. DIVA’s combined astrometric and photometric measurements of high precision will have important impacts on astronomy and astrophysics in the next decade.


2010 ◽  
Vol 97-101 ◽  
pp. 64-68
Author(s):  
Jian Chen ◽  
Jin Wang ◽  
Guo Dong Lu ◽  
Zheng Qi Ling

High- precision and large scale are the developing trend for injection molding machine clamping system .This paper compared the characteristics of three-platen toggle and dual-platen hydraulic clamping system. The key impact factors that effecting plastic parts` precision from clamping system were discussed systematically first time. Based on these analyses, a new clamping system has been proposed and manufactured to improve the plastics parts` precision, including three new technologies: new type dual-platen structure, parallelism adaptive correction technology and numerical controlled hydraulic servo system technology. It has been applied in practical machine successfully, and experiment result proves that it is effective enough to satisfying the high-precision molding of large plastics parts.


1988 ◽  
Vol 59 (3) ◽  
pp. 420-422 ◽  
Author(s):  
Andrew M. Hawryluk ◽  
Sherry L. Hill

2019 ◽  
Vol 9 (22) ◽  
pp. 4775 ◽  
Author(s):  
Osama Saber ◽  
Nagih M. Shaalan ◽  
Aya Osama ◽  
Adil Alshoaibi

The plate-like structure is the most familiar morphology for conventional layered double hydroxides (LDHs) in case their structures consist of divalent and trivalent cations in their layers. In this study, nanofibers and nanoneedles of Co–Si LDHs were prepared for the first time. By the inclusion of zirconium inside the nanolayers of LDH structures, their plates were formed and transformed to nanofibers. These nanofibers were modified by the insertion of titanium to build again plate-like morphology for the LDH structure. This morphology controlling was studied and explained by a dual anions intercalation process. The optical properties of Co–Si LDHs indicated that the incorporation of zirconium within their nanolayers decreased the band gap energy from 4.4 eV to 2.9 eV. Following the same behavior, the insertion of titanium besides zirconium within the nanolayers of Co–Si LDHs caused a further reduction in the band gap energy, which became 2.85 eV. Although there is no data for the optical properties of Co–Si LDHs in the literature, it is interesting to observe the low band gap energy for Co–Si LDHs to become more suitable for optical applications. These results concluded that the reduction of the band gap energy and the formation of nanofibers introduce new optical materials for developing and designing optical nanodevices.


2000 ◽  
Author(s):  
Daniele Cocco ◽  
Rudi Sergo ◽  
Giovanni Sostero ◽  
Marco Zangrando

The limb radiance inversion radiometer (l.r.i.r.) on Nimbus 6 was the first orbiting infrared limb scanner. It had four channels with which to determine temperature, Oz and H aO in the stratosphere and low mesosphere. The limb infrared monitor of the stratosphere (l.i.m.s.) is a similar six-channel instrument launched on Nimbus 7 in October 1978 to measure temperature, O 3 , H 2 O , NO 2 and HNO 3 . The instrumentation and inversion techniques are briefly described. In this method, the outwelling radiance in the 15 pm bands of CO 2 is inverted to yield temperatures as a function of pressure; the temperature is then used w ith the radiance emitted by a trace gas to determine its concentration. L.r.i.r. temperature and ozone results show high precision and good agreement with rocket measurements from the tropopause into the mesosphere. Preliminary l.i.m.s. results show that temperatures may be retrieved into the troposphere, and the capability to determine constituent concentrations in the part / 10 9 range from a satellite for the first time. The application of such data for photochemical dynamical and transport problems is discussed.


2015 ◽  
Vol 8 (3) ◽  
Author(s):  
Shelley A. Page

The weak charge of the proton has been determined for the first time via a high precision electron-proton scattering experiment, Qweak, carried out at Jefferson Laboratory (JLab) in Newport News, USA. The weak charge is a basic property in subatomic physics, analogous to electric charge. The Standard Model makes a prediction for the weak charges of protons and other particles. First results described here are based on an initial 4% of the data set reported in 20131, with the ultimate goal of the experiment being a high precision Standard Model test conducted with the full Qweak data set. These initial results are consistent with the Standard Model prediction; they serve as an important first determination of the proton’s weak charge and a proof of principle that the ultimate goals are within reach.


Sign in / Sign up

Export Citation Format

Share Document