scholarly journals Regenerable Bead-Based Microfluidic Device with integrated THIN-Film Photodiodes for Real Time Monitoring of DNA Detection

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 953
Author(s):  
Catarina R. F. Caneira ◽  
Denis R. Santos ◽  
Virginia Chu ◽  
João P. Conde

Nanoporous microbead-based microfluidic systems for biosensing applications allow enhanced sensitivities, while being low cost and amenable for miniaturization. The regeneration of the microfluidic biosensing system results in a further decrease in costs while the integration of on-chip signal transduction enhances portability. Here, we present a regenerable bead-based microfluidic device, with integrated thin-film photodiodes, for real-time monitoring of molecular recognition between a target DNA and complementary DNA (cDNA). High-sensitivity assay cycles could be performed without significant loss of probe DNA density and activity, demonstrating the potential for reusability, portability and reproducibility of the system.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
ABHINAV BHUSHAN ◽  
SONALI J. KARNIK

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1922
Author(s):  
Gwang Su Kim ◽  
Yumin Park ◽  
Joonchul Shin ◽  
Young Geun Song ◽  
Chong-Yun Kang

The breath gas analysis through gas phase chemical analysis draws attention in terms of non-invasive and real time monitoring. The array-type sensors are one of the diagnostic methods with high sensitivity and selectivity towards the target gases. Herein, we presented a 2 × 4 sensor array with a micro-heater and ceramic chip. The device is designed in a small size for portability, including the internal eight-channel sensor array. In2O3 NRs and WO3 NRs manufactured through the E-beam evaporator’s glancing angle method were used as sensing materials. Pt, Pd, and Au metal catalysts were decorated for each channel to enhance functionality. The sensor array was measured for the exhaled gas biomarkers CH3COCH3, NO2, and H2S to confirm the respiratory diagnostic performance. Through this operation, the theoretical detection limit was calculated as 1.48 ppb for CH3COCH3, 1.9 ppt for NO2, and 2.47 ppb for H2S. This excellent detection performance indicates that our sensor array detected the CH3COCH3, NO2, and H2S as biomarkers, applying to the breath gas analysis. Our results showed the high potential of the gas sensor array as a non-invasive diagnostic tool that enables real-time monitoring.


2020 ◽  
Vol 15 ◽  
pp. 155892502097726
Author(s):  
Wei Wang ◽  
Zhiqiang Pang ◽  
Ling Peng ◽  
Fei Hu

Performing real-time monitoring for human vital signs during sleep at home is of vital importance to achieve timely detection and rescue. However, the existing smart equipment for monitoring human vital signs suffers the drawbacks of high complexity, high cost, and intrusiveness, or low accuracy. Thus, it is of great need to develop a simplified, nonintrusive, comfortable and low cost real-time monitoring system during sleep. In this study, a novel intelligent pillow was developed based on a low-cost piezoelectric ceramic sensor. It was manufactured by locating a smart system (consisting of a sensing unit i.e. a piezoelectric ceramic sensor, a data processing unit and a GPRS communication module) in the cavity of the pillow made of shape memory foam. The sampling frequency of the intelligent pillow was set at 1000 Hz to capture the signals more accurately, and vital signs including heart rate, respiratory rate and body movement were derived through series of well established algorithms, which were sent to the user’s app. Validation experimental results demonstrate that high heart-rate detection accuracy (i.e. 99.18%) was achieved in using the intelligent pillow. Besides, human tests were conducted by detecting vital signs of six elder participants at their home, and results showed that the detected vital signs may well predicate their health conditions. In addition, no contact discomfort was reported by the participants. With further studies in terms of validity of the intelligent pillow and large-scale human trials, the proposed intelligent pillow was expected to play an important role in daily sleep monitoring.


2015 ◽  
Vol 47 (3) ◽  
pp. 236-251 ◽  
Author(s):  
Bambang Kuswandi ◽  
Fitria Damayanti ◽  
Jayus Jayus ◽  
Aminah Abdullah ◽  
Lee Yook Heng

Author(s):  
Zhijia Peng ◽  
Xiaogang Lin ◽  
Weiqi Nian ◽  
Xiaodong Zheng ◽  
Jayne Wu

Early diagnosis and treatment have always been highly desired in the fight against cancer, and detection of circulating tumor DNA (ctDNA) has recently been touted as highly promising for early cancer screening. Consequently, the detection of ctDNA in liquid biopsy gains much attention in the field of tumor diagnosis and treatment, which has also attracted research interest from the industry. However, traditional gene detection technology is difficult to achieve low cost, real-time and portable measurement of ctDNA. Electroanalytical biosensors have many unique advantages such as high sensitivity, high specificity, low cost and good portability. Therefore, this review aims to discuss the latest development of biosensors for minimal-invasive, rapid, and real-time ctDNA detection. Various ctDNA sensors are reviewed with respect to their choices of receptor probes, detection strategies and figures of merit. Aiming at the portable, real-time and non-destructive characteristics of biosensors, we analyze their development in the Internet of Things, point-of-care testing, big data and big health.


Sign in / Sign up

Export Citation Format

Share Document