scholarly journals Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Rongrong Liu ◽  
Florent Nageotte ◽  
Philippe Zanne ◽  
Michel de Mathelin ◽  
Birgitta Dresp-Langley

Deep learning has provided new ways of manipulating, processing and analyzing data. It sometimes may achieve results comparable to, or surpassing human expert performance, and has become a source of inspiration in the era of artificial intelligence. Another subfield of machine learning named reinforcement learning, tries to find an optimal behavior strategy through interactions with the environment. Combining deep learning and reinforcement learning permits resolving critical issues relative to the dimensionality and scalability of data in tasks with sparse reward signals, such as robotic manipulation and control tasks, that neither method permits resolving when applied on its own. In this paper, we present recent significant progress of deep reinforcement learning algorithms, which try to tackle the problems for the application in the domain of robotic manipulation control, such as sample efficiency and generalization. Despite these continuous improvements, currently, the challenges of learning robust and versatile manipulation skills for robots with deep reinforcement learning are still far from being resolved for real-world applications.

2021 ◽  
Vol 11 (1) ◽  
pp. 104-113
Author(s):  
Walead Kaled Seaman ◽  
Sırma Yavuz

Compared with traditional motion planners and deep reinforcement learning DRL has been applied more and more widely to achieving sequential behaviors control of movement robots in internal environment. There are two addressed issues of deep learning. The inability to generalize to achieve set of goals. The data inefficiency, that is, the model requires, many trial and error loops (often costly). Applied can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging. In this paper, we address these two issues and apply the proposed model to visual navigation in conformity with generalizing in conformity with obtaining new goals (target-driven). To tackle the first issue, we advise an actor-critic mannequin whose coverage is a feature of the intention as much properly namely the present day state, which approves higher generalization. To tackle the second issue, we advocate the 3D scenes in environment indoor simulation is AI2-THOR framework, who provides a surrounding including tremendous with high-quality 3D scenes and a physics engine. Our framework allows agents according to receive actions and have interaction with objects. Hence, we are able to accumulate an enormous number of training samples successfully with sequential decision making based totally on the RL framework. Particularly, Healthcare and medicine stand to benefit immensely from deep learning because of the sheer volume of data being generated we used the behavioral cloning approach, who enables the active agent to storeroom an expert (or mentor) policy except for the utilization of reward function stability or generalizes across targets.


2021 ◽  
pp. 105971232199942
Author(s):  
Daniel Graves ◽  
Johannes Günther ◽  
Jun Luo

General value functions (GVFs) in the reinforcement learning (RL) literature are long-term predictive summaries of the outcomes of agents following specific policies in the environment. Affordances as perceived action possibilities with specific valence may be cast into predicted policy-relative goodness and modeled as GVFs. A systematic explication of this connection shows that GVFs and especially their deep-learning embodiments (1) realize affordance prediction as a form of direct perception, (2) illuminate the fundamental connection between action and perception in affordance, and (3) offer a scalable way to learn affordances using RL methods. Through an extensive review of existing literature on GVF applications and representative affordance research in robotics, we demonstrate that GVFs provide the right framework for learning affordances in real-world applications. In addition, we highlight a few new avenues of research opened up by the perspective of “affordance as GVF,” including using GVFs for orchestrating complex behaviors.


Author(s):  
Toshio Fukuda ◽  
Masahiro Nakajima ◽  
Mohd Ridzuan Ahmad ◽  
Yajing Shen ◽  
Kousuke Nogawa ◽  
...  

2009 ◽  
Vol 129 (4) ◽  
pp. 363-367
Author(s):  
Tomoyuki Maeda ◽  
Makishi Nakayama ◽  
Hiroshi Narazaki ◽  
Akira Kitamura

1989 ◽  
Author(s):  
Constantine Tsikos ◽  
Tom Chmielewski ◽  
Brian Frederick

Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song-Quan Ong ◽  
Hamdan Ahmad ◽  
Gomesh Nair ◽  
Pradeep Isawasan ◽  
Abdul Hafiz Ab Majid

AbstractClassification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.


Sign in / Sign up

Export Citation Format

Share Document