scholarly journals FumeBot: A Deep Convolutional Neural Network Controlled Robot

Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 62 ◽  
Author(s):  
Ajith Thomas ◽  
John Hedley

This paper describes the development of a convolutional neural network for the control of a home monitoring robot (FumeBot). The robot is fitted with a Raspberry Pi for on board control and a Raspberry Pi camera is used as the data feed for the neural network. A wireless connection between the robot and a graphical user interface running on a laptop allows for the diagnostics and development of the neural network. The neural network, running on the laptop, was trained using a supervised training method. The robot was put through a series of obstacle courses to test its robustness, with the tests demonstrating that the controller has learned to navigate the obstacles to a reasonable level. The main problem identified in this work was that the neural controller did not have memory of past actions it took and a past state of the world resulting in obstacle collisions. Options to rectify this issue are suggested.

2021 ◽  
Vol 3 (1) ◽  
pp. 8-14
Author(s):  
D. V. Fedasyuk ◽  
◽  
T. V. Demianets ◽  

A melanoma is the deadliest skin cancer, so early diagnosis can provide a positive prognosis for treatment. Modern methods for early detecting melanoma on the image of the tumor are considered, and their advantages and disadvantages are analyzed. The article demonstrates a prototype of a mobile application for the detection of melanoma on the image of a mole based on a convolutional neural network, which is developed for the Android operating system. The mobile application contains melanoma detection functions, history of the previous examinations and a gallery with images of the previous examinations grouped by the location of the lesion. The HAM10000-based training dataset has been supplemented with the images of melanoma from the archive of The International Skin Imaging Collaboration to eliminate class imbalances and improve network accuracy. The search for existing neural networks that provide high accuracy was conducted, and VGG16, MobileNet, and NASNetMobile neural networks have been selected for research. Transfer learning and fine-tuning has been applied to the given neural networks to adapt the networks for the task of skin lesion classification. It is established that the use of these techniques allows to obtain high accuracy of the neural network for this task. The process of converting a convolutional neural network to an optimized Flatbuffer format using TensorFlow Lite for placement and use on a mobile device is described. The performance characteristics of the selected neural networks on the mobile device are evaluated according to the classification time on the CPU and GPU and the amount of memory occupied by the file of a single network is compared. The neural network file size was compared before and after conversion. It has been shown that the use of the TensorFlow Lite converter significantly reduces the file size of the neural network without affecting its accuracy by using an optimized format. The results of the study indicate a high speed of application and compactness of networks on the device, and the use of graphical acceleration can significantly decrease the image classification time of the tumor. According to the analyzed parameters, NASNetMobile was selected as the optimal neural network to be used in the mobile application of melanoma detection.


2020 ◽  
Vol 8 (5) ◽  
pp. 1277-1284

Cardiovascular disease is the number one deadly disease in the world. Arrhythmia is one of the types of cardiovascular disease which is hard to detect but by using the routine electrocardiogram (ECG) recording. Due to the variety and the noise of ECG, it is very time consuming to detect it only by experts using bare eyes.Learning from the previous research in order to help the experts, this research develop 11 layers Convolutional Neural Network 2D (CNN 2D) using MITBIH Arrhythmia Dataset. The dataset is firstly preprocessed by using wavelet transform method, then being segmented by R-peak method. The challenge is how to conquer the imbalance and small amount of data but still get the optimal accuracy. This research can be helpful in helping the doctors figure out the type of arrhythmia of the patient. Therefore, this research did the comparison of various optimizers attach in CNN 2D namely, Adabound, Adadelta, Adagrad, Amsbound, Adam and Stochastic Gradient Descent (SGD). The result is Adabound get the highest performance with 91% accuracy and faster 1s training duration than Adam which is approximately 18s per epoch.


2017 ◽  
Vol 10 (27) ◽  
pp. 1329-1342 ◽  
Author(s):  
Javier O. Pinzon Arenas ◽  
Robinson Jimenez Moreno ◽  
Paula C. Useche Murillo

This paper presents the implementation of a Region-based Convolutional Neural Network focused on the recognition and localization of hand gestures, in this case 2 types of gestures: open and closed hand, in order to achieve the recognition of such gestures in dynamic backgrounds. The neural network is trained and validated, achieving a 99.4% validation accuracy in gesture recognition and a 25% average accuracy in RoI localization, which is then tested in real time, where its operation is verified through times taken for recognition, execution behavior through trained and untrained gestures, and complex backgrounds.


2019 ◽  
Vol 10 (3) ◽  
pp. 60-73 ◽  
Author(s):  
Ravinder Ahuja ◽  
Daksh Jain ◽  
Deepanshu Sachdeva ◽  
Archit Garg ◽  
Chirag Rajput

Communicating through hand gestures with each other is simply called the language of signs. It is an acceptable language for communication among deaf and dumb people in this society. The society of the deaf and dumb admits a lot of obstacles in day to day life in communicating with their acquaintances. The most recent study done by the World Health Organization reports that very large section (around 360 million folks) present in the world have hearing loss, i.e. 5.3% of the earth's total population. This gives us a need for the invention of an automated system which converts hand gestures into meaningful words and sentences. The Convolutional Neural Network (CNN) is used on 24 hand signals of American Sign Language in order to enhance the ease of communication. OpenCV was used in order to follow up on further execution techniques like image preprocessing. The results demonstrated that CNN has an accuracy of 99.7% utilizing the database found on kaggle.com.


2018 ◽  
Vol 119 (4) ◽  
pp. 1251-1253 ◽  
Author(s):  
Randolph F. Helfrich

Our continuous perception of the world could be the result of discrete sampling, where individual snapshots are seamlessly fused into a coherent stream. It has been argued that endogenous oscillatory brain activity could provide the functional substrate of cortical rhythmic sampling. A new study demonstrates that cortical rhythmic sampling is tightly linked to the oculomotor system, thus providing a novel perspective on the neural network underlying top-down guided visual perception.


Author(s):  
Ezra Ameperosa ◽  
Pranav A. Bhounsule

Abstract Periodic replacement of fasteners such as bolts are an integral part of many structures (e.g., airplanes, cars, ships) and require periodic maintenance that may involve either their tightening or replacement. Current manual practices are time consuming and costly especially due to the large number of bolts. Thus, an automated method that is able to visually detect and localize bolt positions would be highly beneficial. In this paper, we demonstrate the use of deep neural network using domain randomization for detecting and localizing multiple bolts on a workpiece. In contrast to previous deep learning approaches that require training on real images, the use of domain randomization allows for all training to be done in simulation. The key idea here is to create a wide variety of computer generated synthetic images by varying the texture, color, camera position and orientation, distractor objects, and noise, and train the neural network on these images such that the neural network is robust to scene variability and hence provides accurate results when deployed on real images. Using domain randomization, we train two neural networks, a faster regional convolutional neural network for detecting the bolt and predicting a bounding box, and a regression convolutional neural network for estimating the x- and y-position of the bolt relative to the coordinates fixed to the workpiece. Our results indicate that in the best case we are able to detect bolts with 85% accuracy and are able to predict the position of 75% of bolts within 1.27 cm. The novelty of this work is in the use of domain randomization to detect and localize: (1) multiples of a single object, and (2) small sized objects (0.6 cm × 2.5 cm).


2020 ◽  
Vol 23 (13) ◽  
pp. 2952-2964
Author(s):  
Zhen Wang ◽  
Guoshan Xu ◽  
Yong Ding ◽  
Bin Wu ◽  
Guoyu Lu

Concrete surface crack detection based on computer vision, specifically via a convolutional neural network, has drawn increasing attention for replacing manual visual inspection of bridges and buildings. This article proposes a new framework for this task and a sampling and training method based on active learning to treat class imbalances. In particular, the new framework includes a clear definition of two categories of samples, a relevant sliding window technique, data augmentation and annotation methods. The advantages of this framework are that data integrity can be ensured and a very large amount of annotation work can be saved. Training datasets generated with the proposed sampling and training method not only are representative of the original dataset but also highlight samples that are highly complex, yet informative. Based on the proposed framework and sampling and training strategy, AlexNet is re-tuned, validated, tested and compared with an existing network. The investigation revealed outstanding performances of the proposed framework in terms of the detection accuracy, precision and F1 measure due to its nonlinear learning ability, training dataset integrity and active learning strategy.


2019 ◽  
Vol 9 (10) ◽  
pp. 1983 ◽  
Author(s):  
Seigo Ito ◽  
Mineki Soga ◽  
Shigeyoshi Hiratsuka ◽  
Hiroyuki Matsubara ◽  
Masaru Ogawa

Automated guided vehicles (AGVs) are important in modern factories. The main functions of an AGV are its own localization and object detection, for which both sensor and localization methods are crucial. For localization, we used a small imaging sensor named a single-photon avalanche diode (SPAD) light detection and ranging (LiDAR), which uses the time-of-flight principle and arrays of SPADs. The SPAD LiDAR works both indoors and outdoors and is suitable for AGV applications. We utilized a deep convolutional neural network (CNN) as a localization method. For accurate CNN-based localization, the quality of the supervised data is important. The localization results can be poor or good if the supervised training data are noisy or clean, respectively. To address this issue, we propose a quality index for supervised data based on correlations between consecutive frames visualizing the important pixels for CNN-based localization. First, the important pixels for CNN-based localization are determined, and the quality index of supervised data is defined based on differences in these pixels. We evaluated the quality index in indoor-environment localization using the SPAD LiDAR and compared the localization performance. Our results demonstrate that the index correlates well to the quality of supervised training data for CNN-based localization.


Sign in / Sign up

Export Citation Format

Share Document