scholarly journals Use of SMOS L3 Soil Moisture Data: Validation and Drought Assessment for Pernambuco State, Northeast Brazil

2018 ◽  
Vol 10 (8) ◽  
pp. 1314 ◽  
Author(s):  
Alzira Souza ◽  
Alfredo Neto ◽  
Luciana Rossato ◽  
Regina Alvalá ◽  
Laio Souza

The goal of this study was to validate soil moisture data from Soil Moisture Ocean Salinity (SMOS) using two in situ databases for Pernambuco State, located in Northeast Brazil. The validation process involved two approaches, pixel-station comparison and areal average, for three regions in Pernambuco with different climatic characteristics. After validation, the SMOS data were used for drought assessment by calculating soil moisture anomalies for the available period of data. Four statistical criteria were used to verify the quality of the satellite data: Pearson correlation coefficient, Willmott index of agreement, BIAS, and root mean squared difference (RMSD). The average RMSD calculated from the daily time series in the pixel and the areal assessment were 0.071 m3m−3 and 0.04 m3m−3, respectively. Those values are near to the expected 0.04 m3m−3 accuracy of the SMOS mission. The analysis of soil moisture anomalies enabled the assessment of the dry period between 2012 and 2017 and the identification of regions most impacted by the drought. The driest year for all regions was 2012, when the anomaly values achieved −50% in some regions. The use of SMOS data provided additional information that was used in conjunction with the precipitation data to assess drought periods. This may be particularly relevant for planning in agriculture and supporting decision makers and farmers.

2014 ◽  
Vol 28 (3) ◽  
pp. 359-369 ◽  
Author(s):  
Bogusław Usowicz ◽  
Wojciech Marczewski ◽  
Jerzy B. Usowicz ◽  
Mateusz I. Lukowski ◽  
Jerzy Lipiec

Abstract Soil moisture datasets at various scales are needed for sustainable land use and water management. The aim of this study was to compare soil moisture ocean salinity satellite and in situ soil moisture data for the Podlasie and Polesie regions in Eastern Poland. Both regions have similar climatic and topographic conditions but are different in land use, vegetation, and soil cover. The test sites were located on agricultural fields on sandy soils and natural vegetation on marshy soils that prevail in the Podlasie and Polesie regions, respectively. The soil moisture ocean salinity soil moisture data were obtained from radiometric measurements (1.4 GHz) and the ground soil moisture from sensors at a depth of 5 cm during the years 2010-2011. In general, temporal patterns of soil moisture from both satellite and ground measurements followed the rainfall trend. The regression coefficients, Bland-Altman analysis, concordance correlation coefficient, and total deviation index showed that the agreement between ground and soil moisture ocean salinity derived soil moisture data is better for the Podlasie than the Polesie region. The lower agreement in Polesie was attributed mostly to the presence of the widespread natural vegetation on the wetter marsh soil along with minor contribution of agriculturally used drier coarse-textured soils.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2777
Author(s):  
Tao Cheng ◽  
Siyang Hong ◽  
Bensheng Huang ◽  
Jing Qiu ◽  
Bikui Zhao ◽  
...  

Drought is the costliest disaster around the world and in China as well. Northeastern China is one of China’s most important major grain producing areas. Frequent droughts have harmed the agriculture of this region and further threatened national food security. Therefore, the timely and effective monitoring of drought is extremely important. In this study, the passive microwave remote sensing soil moisture data, i.e., the SMOS soil moisture (SMOS-SM) product, was compared to several in situ meteorological indices through Pearson correlation analysis to assess the performance of SMOS-SM in monitoring drought in northeastern China. Then, maps based on SMOS-SM and in situ indices were created for July from 2010 to 2015 to identify the spatial pattern of drought distributions. Our results showed that the SMOS-SM product had relatively high correlation with in situ indices, especially SPI and SPEI values of a nine-month scale for the growing season. The drought patterns shown on maps generated from SPI-9, SPEI-9 and sc-PDSI were also successfully captured using the SMOS-SM product. We found that the SMOS-SM product effectively monitored drought patterns in northeastern China, and this capacity would be enhanced when field capacity information became available.


2021 ◽  
Vol 25 (9) ◽  
pp. 5029-5045
Author(s):  
Bonan Li ◽  
Stephen P. Good

Abstract. The National Aeronautics and Space Administration (NASA) Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal patterns in surface soil moisture using dual L-band microwave retrievals of horizontal (TBh) and vertical (TBv) polarized microwave brightness temperatures through a modeled mechanistic relationship between vegetation opacity, surface scattering albedo, and soil effective temperature (Teff). Although this model has been validated against in situ soil moisture, there is a lack of systematic characterization of where and why SMAP estimates deviate from the in situ observations. Here, we assess how the information content of in situ soil moisture observations from the US Climate Reference Network contrasts with (1) the information contained within raw SMAP observations (i.e., “informational random uncertainty”) derived from TBh, TBv, and Teff themselves and with (2) the information contained in SMAP's dual-channel algorithm (DCA) soil moisture estimates (i.e., “informational model uncertainty”) derived from the model's inherent structure and parameterizations. The results show that, on average, 80 % of the information in the in situ soil moisture is unexplained by SMAP DCA soil moisture estimates. Loss of information in the DCA modeling process contributes 35 % of the unexplained information, while the remainder is induced by a lack of additional explanatory power within TBh, TBv, and Teff. Overall, retrieval quality of SMAP DCA soil moisture, denoted as the Pearson correlation coefficient between SMAP DCA soil moisture and in situ soil moisture, is negatively correlated with the informational uncertainties, with slight differences across different land covers. The informational model uncertainty (Pearson correlation of −0.59) was found to be more influential than the informational random uncertainty (Pearson correlation of −0.34), suggesting that the poor performance of SMAP DCA at some locations is driven by model parameterization and/or structure and not underlying satellite measurements of TBh and TBv. A decomposition of mutual information between TBh, TBv, and DCA soil moisture shows that on average 58 % of information provided by TBh and TBv to DCA estimates is redundant. The amount of information redundantly and synergistically provided by TBh and TBv was found to be closely related (Pearson correlations of 0.79 and −0.82, respectively) to the retrieval quality of SMAP DCA. TBh and TBv tend to contribute large redundant information to DCA estimates under surfaces or conditions where DCA makes better retrievals. This study provides a baseline approach that can also be applied to evaluate other remote sensing models and understand informational loss as satellite retrievals are translated to end-user products.


10.29007/19gn ◽  
2018 ◽  
Author(s):  
Diego Cézar Dos Santos Araújo ◽  
Suzana Maria Gico Lima Montenegro ◽  
Ana Cláudia Villar E Luna Gusmão ◽  
Diogo Francisco Borba Rodrigues

Soil Moisture and Ocean Salinity (SMOS) data validation has been widely performed worldwide since the product became available. However, there are few studies for Brazil. This study focused on the validation of a new version of SMOS product developed by the Institut National de la Recherche Agronomique (INRA) and Center d'Etudes Spatiales de la BIOsphère (CESBIO). One of the advantages of SMOS- INRA-CESBIO (SMOS-IC) is that the product is as independent as possible from auxiliary data. The validation was performed at 7 stations located in a semi-arid mesoregion of Pernambuco State, Northeast Brazil, for the year 2016. Bias, root mean square difference (RMSD), unbiased RMSD and the Pearson correlation coefficient (R) were computed between the SMOS-IC data and in situ measurements, considering only the ascending orbit (6 am local time). The results were consistent with those found in several studies, including error metrics. The correlation coefficient (r) ranged from 0.53 to 0.86 (mean 0.68) and the sensor was able to respond adequately to rainfall events. The results of this study are useful to demonstrate the need to continue validating soil moisture data obtained by remote sensors throughout the state, especially in more rainy locations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2007 ◽  
Vol 24 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Sabine Philipps ◽  
Christine Boone ◽  
Estelle Obligis

Abstract Soil Moisture and Ocean Salinity (SMOS) was chosen as the European Space Agency’s second Earth Explorer Opportunity mission. One of the objectives is to retrieve sea surface salinity (SSS) from measured brightness temperatures (TBs) at L band with a precision of 0.2 practical salinity units (psu) with averages taken over 200 km by 200 km areas and 10 days [as suggested in the requirements of the Global Ocean Data Assimilation Experiment (GODAE)]. The retrieval is performed here by an inverse model and additional information of auxiliary SSS, sea surface temperature (SST), and wind speed (W). A sensitivity study is done to observe the influence of the TBs and auxiliary data on the SSS retrieval. The key role of TB and W accuracy on SSS retrieval is verified. Retrieval is then done over the Atlantic for two cases. In case A, auxiliary data are simulated from two model outputs by adding white noise. The more realistic case B uses independent databases for reference and auxiliary ocean parameters. For these cases, the RMS error of retrieved SSS on pixel scale is around 1 psu (1.2 for case B). Averaging over GODAE scales reduces the SSS error by a factor of 12 (4 for case B). The weaker error reduction in case B is most likely due to the correlation of errors in auxiliary data. This study shows that SSS retrieval will be very sensitive to errors on auxiliary data. Specific efforts should be devoted to improving the quality of auxiliary data.


2021 ◽  
Author(s):  
David Fairbairn ◽  
Patricia de Rosnay ◽  
Peter Weston

<p>Environmental (e.g. floods, droughts) and weather prediction systems rely on an accurate representation of soil moisture (SM). The EUMETSAT H SAF aims to provide high quality satellite-based hydrological products, including SM.<br>ECMWF is producing ASCAT root zone SM for H SAF. The production relies on an Extended Kalman filter to retrieve root zone SM from surface SM satellite data. A 10 km sampling reanalysis product (1992-2020) forced by ERA5 atmospheric fields (H141/H142) is produced for H SAF, which assimilates ERS/SCAT (1992-2006) and ASCAT-A/B/C (2007-2020) derived surface SM. The root-zone SM performance is validated using sparse in situ observations globally and generally demonstrates a positive and consistent correlation over the period. A negative trend in root-zone SM is found during summer and autumn months over much of Europe during the period (1992-2020). This is consistent with expected climate change impacts and is particularly alarming over the water-scarce Mediterranean region. The recent hot and dry summer of 2019 and dry spring of 2020 are well captured by negative root-zone SM anomalies. Plans for the future H SAF data record products will be presented, including the assimilation of high-resolution EPS-SCA-derived soil moisture data.</p>


2017 ◽  
Author(s):  
Sibo Zhang ◽  
Jean-Christophe Calvet ◽  
José Darrozes ◽  
Nicolas Roussel ◽  
Frédéric Frappart ◽  
...  

Abstract. This work aims to assess the estimation of surface volumetric soil moisture (VSM) using the Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 or 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show a good agreement (R2 = 0.86 and RMSE = 0.04 m3 m−3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 cm and 5 cm, especially during light rainfall events.


2015 ◽  
pp. 55
Author(s):  
R. Fernandez Moran ◽  
J. P. Wigneron ◽  
E. Lopez-Baeza ◽  
M. Miernecki ◽  
P. Salgado-Hernanz ◽  
...  

La misión de SMOS (Soil Moisture and Ocean Salinity) se lanzó el 2 de Noviembre de 2009 con el objetivo de proporcionar datos de humedad del suelo y salinidad del mar. La principal actividad de la conocida como Valencia Anchor Station (VAS) es asistir en la validación a largo plazo de productos de suelo de SMOS. El presente estudio se centra en una validación de datos de nivel 3 de SMOS en la VAS con medidas in situ tomadas en el periodo 2010-2012. El radiómetro Elbara-II está situado dentro de los confines de la VAS, observando un campo de viñedos que se considera representativo de una gran proporción de un área de 50×50 km, suficiente para cubrir un footprint de SMOS. Las temperaturas de brillo (TB) adquiridas por ELBARA-II se compararon con las observadas por SMOS en las mismas fechas y horas. También se utilizó la inversión del modelo L-MEB con el fin de obtener humedades de suelo (SM) que, posteriormente, se compararon con datos de nivel 3 de SMOS. Se ha encontrado una buena correlación entre ambas series de TB, con mejoras año tras año, achacable fundamentalmente a la disminución de precipitaciones en el periodo objeto de estudio y a la mitigación de las interferencias por radiofrecuencia en banda L. La mayor homogeneidad del footprint del radiómetro ELBARA-II frente al de SMOS explica la mayor variabilidad de sus TB. Los periodos de precipitación más intensa (primavera y otoño) también son de mayor SM, lo que corrobora la consistencia de los resultados de SM simulados a través de las observaciones del radiómetro. Sin embargo, se debe resaltar una subestimación por parte de SMOS de los valores de SM respecto a los obtenidos por ELBARA-II, presumiblemente debido a la influencia que la pequeña fracción de suelo no destinado al cultivo de la vid tiene sobre SMOS. Las estimaciones por parte de SMOS en órbita descendente (6 p.m.) resultaron de mayor calidad (mayor correlación y menores RMSE y bias) que en órbita ascendente (6 a.m., momento de mayor humedad de suelo).


2019 ◽  
Vol 11 (5) ◽  
pp. 478 ◽  
Author(s):  
Jostein Blyverket ◽  
Paul Hamer ◽  
Laurent Bertino ◽  
Clément Albergel ◽  
David Fairbairn ◽  
...  

A number of studies have shown that assimilation of satellite derived soil moisture using the ensemble Kalman Filter (EnKF) can improve soil moisture estimates, particularly for the surface zone. However, the EnKF is computationally expensive since an ensemble of model integrations have to be propagated forward in time. Here, assimilating satellite soil moisture data from the Soil Moisture Active Passive (SMAP) mission, we compare the EnKF with the computationally cheaper ensemble Optimal Interpolation (EnOI) method over the contiguous United States (CONUS). The background error–covariance in the EnOI is sampled in two ways: (i) by using the stochastic spread from an ensemble open-loop run, and (ii) sampling from the model spinup climatology. Our results indicate that the EnKF is only marginally superior to one version of the EnOI. Furthermore, the assimilation of SMAP data using the EnKF and EnOI is found to improve the surface zone correlation with in situ observations at a 95 % significance level. The EnKF assimilation of SMAP data is also found to improve root-zone correlation with independent in situ data at the same significance level; however this improvement is dependent on which in situ network we are validating against. We evaluate how the quality of the atmospheric forcing affects the analysis results by prescribing the land surface data assimilation system with either observation corrected or model derived precipitation. Surface zone correlation skill increases for the analysis using both the corrected and model derived precipitation, but only the latter shows an improvement at the 95 % significance level. The study also suggests that assimilation of satellite derived surface soil moisture using the EnOI can correct random errors in the atmospheric forcing and give an analysed surface soil moisture close to that of an open-loop run using observation derived precipitation. Importantly, this shows that estimates of soil moisture could be improved using a combination of assimilating SMAP using the computationally cheap EnOI while using model derived precipitation as forcing. Finally, we assimilate three different Level-2 satellite derived soil moisture products from the European Space Agency Climate Change Initiative (ESA CCI), SMAP and SMOS (Soil Moisture and Ocean Salinity) using the EnOI, and then compare the relative performance of the three resulting analyses against in situ soil moisture observations. In this comparison, we find that all three analyses offer improvements over an open-loop run when comparing to in situ observations. The assimilation of SMAP data is found to perform marginally better than the assimilation of SMOS data, while assimilation of the ESA CCI data shows the smallest improvement of the three analysis products.


Sign in / Sign up

Export Citation Format

Share Document