scholarly journals Prediction of Drought on Pentad Scale Using Remote Sensing Data and MJO Index through Random Forest over East Asia

2018 ◽  
Vol 10 (11) ◽  
pp. 1811 ◽  
Author(s):  
Seonyoung Park ◽  
Eunkyo Seo ◽  
Daehyun Kang ◽  
Jungho Im ◽  
Myong-In Lee

Rapidly developing droughts, including flash droughts, have frequently occurred throughout East Asia in recent years, causing significant damage to agricultural ecosystems. Although many drought monitoring and warning systems have been developed in recent decades, the short-term prediction of droughts (within 10 days) is still challenging. This study has developed drought prediction models for a short-period of time (one pentad) using remote-sensing data and climate variability indices over East Asia (20°–50°N, 90°–150°E) through random forest machine learning. Satellite-based drought indices were calculated using the European Space Agency (ESA) Climate Change Initiative (CCI) soil moisture, Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST), and normalized difference vegetation index (NDVI). The real-time multivariate (RMM) Madden–Julian oscillation (MJO) indices were used because the MJO is a short timescale climate variability and has important implications for droughts in East Asia. The validation results show that those drought prediction models with the MJO variables (r ~ 0.7 on average) outperformed the original models without the MJO variables (r ~ 0.4 on average). The predicted drought index maps showed similar spatial distribution to actual drought index maps. In particular, the MJO-based models captured sudden changes in drought conditions well, from normal/wet to dry or dry to normal/wet. Since the developed models can produce drought prediction maps at high resolution (5 km) for a very short timescale (one pentad), they are expected to provide decision makers with more accurate information on rapidly changing drought conditions.

2020 ◽  
Vol 51 (5) ◽  
pp. 942-958 ◽  
Author(s):  
Jianzhu Li ◽  
Siyao Zhang ◽  
Lingmei Huang ◽  
Ting Zhang ◽  
Ping Feng

Abstract Drought is an important factor that limits economic and social development due to its frequent occurrence and profound influence. Therefore, it is of great significance to make accurate predictions of drought for early warning and disaster alleviation. In this paper, SPEI-1 was confirmed to classify drought grades in the Guanzhong Area, and the autoregressive integrated moving average (ARIMA), random forest (RF) and support vector machine (SVM) model were established. Meteorological data and remote sensing data were used to derive the prediction models. The results showed the following. (1) The SVM model performed the best when the models were developed using meteorological data, remote sensing data and a combination of meteorological and remote sensing data, but the model's corresponding kernel functions are different and include linear, polynomial and Gaussian radial basis kernel functions, respectively. (2) The RF model driven by the remote sensing data and the SVM model driven by the combined meteorological and remote sensing data were found to perform better than the model driven by the corresponding other data in the Guanzhong Area. It is difficult to accurately measure drought with the single meteorological data. Only by considering the combined factors can we more accurately monitor and predict drought. This study can provide an important scientific basis for regional drought warnings and predictions.


2021 ◽  
pp. 413-422
Author(s):  
Shao Li ◽  
Xia Xu

Using remote sensing data to monitor large area drought is one of the important methods of drought monitoring at present. However, the traditional remote sensing drought monitoring methods mainly focus on monitoring single drought response factors such as soil moisture or vegetation status, and the research on comprehensive multi-factor drought monitoring is limited. In order to improve the ability to resist drought events, this paper takes Henan Province of China as an example, takes multi-source remote sensing data as data sources, considers various disaster-causing factors, adopts random forest method to model, and explores the method of regional remote sensing comprehensive drought monitoring using various remote sensing data sources. Compared with neural network, classification regression tree and linear regression, the performance of random forest is more stable and tolerant to noise and outliers. In order to provide a new method for comprehensive assessment of regional drought, a comprehensive drought monitoring model was established based on multi-source remote sensing data, which comprehensively considered the drought factors such as soil water stress, vegetation growth status and meteorological precipitation profit and loss in the process of drought occurrence and development.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Francisco Rodríguez-Puerta ◽  
Rafael Alonso Ponce ◽  
Fernando Pérez-Rodríguez ◽  
Beatriz Águeda ◽  
Saray Martín-García ◽  
...  

Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires.


2020 ◽  
Vol 165 ◽  
pp. 03020
Author(s):  
Kunlin Wang ◽  
Yi Ma ◽  
Fangrong Zhou

Tree barriers in transmission line corridors are an important safety hazard.Scientific prediction of tree height and monitoring tree height changes are essential to solve this hidden danger. In this paper, the advantages of airborne lidar and optical remote sensing data are combined to research the method of tree height inversion. Based on glas data of lidar,waveform parameters such as waveform length, waveform leading edge length and waveform trailing edge length were extracted from waveform data by gaussian decomposition method.Terrain feature parameters were extracted from aster gdem data.The tree crown information was extracted from the optical remote sensing image by means of the mean shift algorithm. Then extract the vegetation index with high correlation with tree height.Finally, the extracted waveform feature parameters, topographic feature parameters, and crown index and vegetation index with high correlation are used as model input variables. The tree height inversion model was established using four regression methods, including multiple linear regression (mlr), support vector machine (svm), random forest (rf), and bp neural network (bpnn). The accuracy evaluation was conducted, and it was concluded that the tree height inversion model based on random forest obtained the best accuracy effect.


Author(s):  
X. F. Sun ◽  
X. G. Lin

As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample’s category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.


Sign in / Sign up

Export Citation Format

Share Document