scholarly journals Monitoring Forest Loss in ALOS/PALSAR Time-Series with Superpixels

2019 ◽  
Vol 11 (5) ◽  
pp. 556 ◽  
Author(s):  
Charlie Marshak ◽  
Marc Simard ◽  
Michael Denbina

We present a flexible methodology to identify forest loss in synthetic aperture radar (SAR) L-band ALOS/PALSAR images. Instead of single pixel analysis, we generate spatial segments (i.e., superpixels) based on local image statistics to track homogeneous patches of forest across a time-series of ALOS/PALSAR images. Forest loss detection is performed using an ensemble of Support Vector Machines (SVMs) trained on local radar backscatter features derived from superpixels. This method is applied to time-series of ALOS-1 and ALOS-2 radar images over a boreal forest within the Laurentides Wildlife Reserve in Québec, Canada. We evaluate four spatial arrangements including (1) single pixels, (2) square grid cells, (3) superpixels based on segmentation of the radar images, and (4) superpixels derived from ancillary optical Landsat imagery. Detection of forest loss using superpixels outperforms single pixel and regular square grid cell approaches, especially when superpixels are generated from ancillary optical imagery. Results are validated with official Québec forestry data and Hansen et al. forest loss products. Our results indicate that this approach can be applied to monitor forest loss across large study areas using L-band radar instruments such as ALOS/PALSAR, particularly when combined with superpixels generated from ancillary optical data.

2021 ◽  
Author(s):  
Stéphane Mermoz ◽  
Alexandre Bouvet ◽  
Marie Ballère ◽  
Thierry Koleck ◽  
Thuy Le Toan

<p>Over the last 25 years, the world’s forests have undergone substantial changes. Deforestation and forest degradation in particular contribute greatly to biodiversity loss through habitat destruction, soil erosion, terrestrial water cycle disturbances and anthropogenic CO2 emissions. In certain regions and countries, the changes have been more rapid, which is the case in the Greater Mekong sub-region recognized as deforestation hotspot (FAO, 2020). In this region, illegal and unsustainable logging and conversion of forests for agriculture, construction of dams and infrastructure are the direct causes of deforestation. Effective tools are therefore urgently needed to survey illegal logging operations which cause widespread concern in the region.</p><p>Monitoring systems based on optical data, such as the UMD/GLAD Deforestation alerts implemented on the Global Forest Watch platform, are limited by the important cloud cover which causes delays in the detections. However, it has been demonstrated in the last few years that forest losses can be timely monitored using dense time series of (synthetic aperture) radar data acquired by Sentinel-1 satellites, developed in the frame of the European Union’s Earth observation Copernicus programme. Ballère et al. (2021) showed for example that 80% of the forest losses due to gold mining in French Guiana are detected first by Sentinel-1-based forest loss detection methods compared with optical-based methods, sometimes by several months. Methods based on Sentinel-1 have been successfully applied at the local scale (Bouvet et al., 2018, Reiche et al., 2018) and can be adapted and tested at the national scale (Ballère et al., 2020).</p><p>We show here the main results of the SOFT project funded by ESA in the frame of the EO Science for Society open calls. The overall SOFT project goal is to provide validated forest loss maps every month over Vietnam, Cambodia and Laos with a minimum mapping unit of 0.04 ha, using Sentinel-1 data. The results confirm the analysis of the deforestation fronts published recently by the WWF (Pacheco et al., 2021), showing that Eastern Cambodia, and Southern and Northern Laos are currently forest disturbances hotspots.</p><p> </p><p>References:</p><p>Ballère et al., (2021). SAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery. <em>Remote Sensing of Environment</em>, <em>252</em>, 112159.</p><p>Bouvet et al., (2018). Use of the SAR shadowing effect for deforestation detection with Sentinel-1 time series. <em>Remote Sensing</em>, <em>10</em>(8), 1250.</p><p>FAO. Global Forest Resources Assessment; Technical Report; Food and Agriculture Association of the United-States: Rome, Italy, 2020.</p><p>Pacheco et al., 2021. Deforestation fronts: Drivers and responses in a changing world. WWF, Gland, Switzerland</p><div>Reiche et al., (2018). Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. <em>Remote Sensing of Environment</em>, <em>204</em>, 147-161.</div>


Author(s):  
E. Elmoussaoui ◽  
A. Moumni ◽  
A. Lahrouni

Abstract. Forest tree species mapping became easier due to the global availability of high spatio-temporal resolution images acquired from multiple sensors. Such data can lead to better forest resources management. Machine-learning pixel based analysis was performed to multi-spectral Sentinel-2 and Synthetic Aperture Radar Sentinel-1 time series integrated with Digital Elevation Model acquired over Argan forest of Essaouira province, Morocco. The argan tree constitutes a fundamental resource for the populations of this arid area of Morocco. This research aims to use the potential of the combination of multi-sensor data to detect, map and identify argan tree from other forest species using three Machine Learning algorithms: Support Vector Machine (SVM), Maximum Likelihood (ML) and Artificial Neural Networks (ANN). The exploited datasets included Sentinel-1 (S1), Sentinel-2 (S2) time series, Shuttle Radar Topographic Missing Digital Elevation Model (DEM) layer and Ground truth data. We tested several sets of scenarios, including single S1 derived features, single S2 time series and combined S1 and S2 derived layers with DEM scene acquisition. The best results (overall accuracy OA and Kappa coefficient K) obtained from time series of optical data (NDVI): OA = 86.87%, K = 0.84, from time series of SAR data (VV+VH/VV): OA = 45.90%, K = 0.36, from the combination of optical and SAR time series (NDVI+VH+DEM): OA = 93.01%, K = 0.914, and from the fusion of optical time series and DEM layer (NDVI+DEM): OA = 93.25%, K = 0.91. These results indicate that single-sensor (S2) integrated with the DEM layer led us to obtain the highest classification results.


2019 ◽  
Vol 85 (11) ◽  
pp. 799-813
Author(s):  
Zhixin Qi ◽  
Anthony Gar-On Yeh ◽  
Xia Li

Aiming at steering the selection of optimal combinations of polarimetric SAR (PolSAR) frequency bands for different land cover classification schemes, this study investigates the land cover classification capabilities of all the possible combinations of L-band ALOS PALSAR fully PolSAR data, C-band RADARSAT-2 fully PolSAR data, and X-band TerraSAR-X HH SAR data. A method that integrates polarimetric decomposition, object-based image analysis, decision tree algorithms, and support vector machines is used for the classification. Polarimetric decomposition theorems are used to interpret the scattering mechanisms at the different frequency bands to reveal the effect mechanisms of PolSAR frequency variation on the classification capability. This study finds that (1) X-band HH SAR is not necessary for classifying the land cover types involved in this study when C- or L-band fully PolSAR are used; (2) C-band fully PolSAR alone is adequate for classifying primitive land cover types, namely, water, bare land, vegetation, and built-up areas; and (3) L-band fully PolSAR alone is adequate for distinguishing between various vegetation types, such as crops, banana trees, and forests.


2018 ◽  
Vol 10 (8) ◽  
pp. 1217 ◽  
Author(s):  
Emile Ndikumana ◽  
Dinh Ho Tong Minh ◽  
Nicolas Baghdadi ◽  
Dominique Courault ◽  
Laure Hossard

The development and improvement of methods to map agricultural land cover are currently major challenges, especially for radar images. This is due to the speckle noise nature of radar, leading to a less intensive use of radar rather than optical images. The European Space Agency Sentinel-1 constellation, which recently became operational, is a satellite system providing global coverage of Synthetic Aperture Radar (SAR) with a 6-days revisit period at a high spatial resolution of about 20 m. These data are valuable, as they provide spatial information on agricultural crops. The aim of this paper is to provide a better understanding of the capabilities of Sentinel-1 radar images for agricultural land cover mapping through the use of deep learning techniques. The analysis is carried out on multitemporal Sentinel-1 data over an area in Camargue, France. The data set was processed in order to produce an intensity radar data stack from May 2017 to September 2017. We improved this radar time series dataset by exploiting temporal filtering to reduce noise, while retaining as much as possible the fine structures present in the images. We revealed that even with classical machine learning approaches (K nearest neighbors, random forest, and support vector machines), good performance classification could be achieved with F-measure/Accuracy greater than 86% and Kappa coefficient better than 0.82. We found that the results of the two deep recurrent neural network (RNN)-based classifiers clearly outperformed the classical approaches. Finally, our analyses of the Camargue area results show that the same performance was obtained with two different RNN-based classifiers on the Rice class, which is the most dominant crop of this region, with a F-measure metric of 96%. These results thus highlight that in the near future these RNN-based techniques will play an important role in the analysis of remote sensing time series.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Aicha Moumni ◽  
Tarik Belghazi ◽  
Brahim Maksoudi ◽  
Abderrahman Lahrouni

Tree species identification and their geospatial distribution mapping are crucial for forest monitoring and management. The satellite-based remote sensing time series of Sentinel missions (Sentinel-1 and Sentinel-2) are a perfect tool to map the type, location, and extent of forest cover over large areas at local or global scale. This study is focused on the geospatial mapping of the endemic argan tree (Argania spinosa (L.) Skeels) and the identification of two other tree species (sandarac gum and olive trees) using optical and synthetic aperture radar (SAR) time series. The objective of the present work is to detect the actual state of forest species trees, more specifically the argan tree, in order to be able to study and analyze forest changes (degradation) and make new strategies to protect this endemic tree. The study was conducted over an area located in Essaouira province, Morocco. The support vector machine (SVM) algorithm was used for the classification of the two types of data. We first classified the optical data for tree species identification and mapping. Second, the SAR time series were used to identify the argan tree and distinguish it from other species. Finally, the two types of satellite images were combined to improve and compare the results of classification with those obtained from single-source data. The overall accuracy (OA) of optical classification reached 86.9% with a kappa coefficient of 0.84 and declined strongly to 37.22% (kappa of 0.29) for SAR classification. The fusion of multisensor data (optical and SAR images) reached an OA of 86.51%. A postclassification was performed to improve the results. The classified images were smoothed, and therefore, the quantitative and qualitative results showed an improvement, in particular for optical classification with a highest OA of 89.78% (kappa coefficient of 0.88). The study confirmed the potential of the multitemporal optical data for accurate forest cover mapping and endemic species identification.


Author(s):  
J. Haarpaintner ◽  
C. Davids ◽  
H. Hindberg ◽  
E. Zahabu ◽  
R. E. Malimbwi

As part of a Tanzanian-Norwegian cooperation project on Monitoring Reporting and Verification (MRV) for REDD+, 2007-2011 Cand L-band synthetic aperture radar (SAR) backscatter data from Envisat ASAR and ALOS Palsar, respectively, have been processed, analysed and used for forest and forest change mapping over a study side in Liwale District in Lindi Region, Tanzania. Land cover observations from forest inventory plots of the National Forestry Resources Monitoring and Assessment (NAFORMA) project have been used for training Gaussian Mixture Models and k-means classifier that have been combined in order to map the study region into forest, woodland and non-forest areas. Maximum forest and woodland extension masks have been extracted by classifying maximum backscatter mosaics in HH and HV polarizations from the 2007-2011 ALOS Palsar coverage and could be used to map efficiently inter-annual forest change by filtering out changes in non-forest areas. Envisat ASAR APS (alternate polarization mode) have also been analysed with the aim to improve the forest/woodland/non-forest classification based on ALOS Palsar. Clearly, the combination of C-band SAR and L-band SAR provides useful information in order to smooth the classification and especially increase the woodland class, but an overall improvement for the wall-to-wall land type classification has yet to be confirmed. The quality assessment and validation of the results is done with very high resolution optical data from WorldView, Ikonos and RapidEye, and NAFORMA field observations.


Author(s):  
J. P. Clemente ◽  
G. Fontanelli ◽  
G. G. Ovando ◽  
Y. L. B. Roa ◽  
A. Lapini ◽  
...  

Abstract. Remote sensing has become an important mean to assess crop areas, specially for the identification of crop types. Google Earth Engine (GEE) is a free platform that provides a large number of satellite images from different constellations. Moreover, GEE provides pixel-based classifiers, which are used for mapping agricultural areas. The objective of this work is to evaluate the performance of different classification algorithms such as Minimum Distance (MD), Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Trees (CART) and Na¨ıve Bayes (NB) on an agricultural area in Tuscany (Italy). Four different scenarios were implemented in GEE combining different information such as optical and Synthetic Aperture Radar (SAR) data, indices and time series. Among the five classifiers used the best performers were RF and SVM. Integrating Sentinel-1 (S1) and Sentinel-2 (S2) slightly improves the classification in comparison to the only S2 image classifications. The use of time series substantially improves supervised classifications. The analysis carried out so far lays the foundation for the integration of time series of SAR and optical data.


2019 ◽  
Vol 41 (2) ◽  
pp. 95-104 ◽  
Author(s):  
Thota Sivasankar ◽  
Junaid Mushtaq Lone ◽  
Sarma K. K. ◽  
Abdul Qadir ◽  
Raju P.L. N.

L-band Synthetic aperture radar (SAR) data has been extensively used for forest aboveground biomass (AGB) estimation due to its higher saturation level. However, SAR backscatter is highly influenced by the topography characteristics along with the bio-geophysical properties of vegetation and underneath soil characteristics. This has limited the accuracy of directly relating the SAR backscatter with above ground biomass in highly undulated terrain. In this study, it has been observed that terrain degree of slope and aspect plays a vital role in influencing the SAR backscatter in addition with AGB. Because of this, the degree of slope and aspect along with SAR backscatter in HH (transmit and receive polarizations are horizontal) and HV (transmit horizontal and receive vertical) polarizations have been considered as inputs for Support Vector Machine (SVM) to improve the biomass retrieval accuracy. Our results demonstrate that the accuracy of AGB estimation over hilly terrain can be significantly improved by considering topographical characteristics in addition to L-band backscatter.  


Author(s):  
Bo Hu ◽  
Yang Wu

Landslide is a sliding movement of rock mass, debris and soil along the slope under the action of gravity. Small Baseline Subset (SBAS) is an established method for the investigation and monitoring of landslide moments. This study focuses on monitoring the long-temporal displacement of mountainous terrain in Danba County, Sichuan Province via SBAS technique, based on 31 scenes of L-band ALOS/PALSAR data from Feb. 2007 to Oct. 2010.The results show that the largest velocity rates in LOS direction are ±120 mm/yr and maximum accumulated displacement is up to -300, which indicates fast movement of the mountainous terrain during the observation time. These results get good consistency against the results of previous study. This demonstrates the strong potential of SBAS technique for monitoring the landslides geohazard.


2016 ◽  
Vol 46 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Everton Hafemann FRAGAL ◽  
Thiago Sanna Freire SILVA ◽  
Evlyn Márcia Leão de Moraes NOVO

ABSTRACTThe Amazon várzeas are an important component of the Amazon biome, but anthropic and climatic impacts have been leading to forest loss and interruption of essential ecosystem functions and services. The objectives of this study were to evaluate the capability of the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) algorithm to characterize changes in várzeaforest cover in the Lower Amazon, and to analyze the potential of spectral and temporal attributes to classify forest loss as either natural or anthropogenic. We used a time series of 37 Landsat TM and ETM+ images acquired between 1984 and 2009. We used the LandTrendr algorithm to detect forest cover change and the attributes of "start year", "magnitude", and "duration" of the changes, as well as "NDVI at the end of series". Detection was restricted to areas identified as having forest cover at the start and/or end of the time series. We used the Support Vector Machine (SVM) algorithm to classify the extracted attributes, differentiating between anthropogenic and natural forest loss. Detection reliability was consistently high for change events along the Amazon River channel, but variable for changes within the floodplain. Spectral-temporal trajectories faithfully represented the nature of changes in floodplain forest cover, corroborating field observations. We estimated anthropogenic forest losses to be larger (1.071 ha) than natural losses (884 ha), with a global classification accuracy of 94%. We conclude that the LandTrendr algorithm is a reliable tool for studies of forest dynamics throughout the floodplain.


Sign in / Sign up

Export Citation Format

Share Document