scholarly journals Forest and Forest Change Mapping with C- and L-band SAR in Liwale, Tanzania

Author(s):  
J. Haarpaintner ◽  
C. Davids ◽  
H. Hindberg ◽  
E. Zahabu ◽  
R. E. Malimbwi

As part of a Tanzanian-Norwegian cooperation project on Monitoring Reporting and Verification (MRV) for REDD+, 2007-2011 Cand L-band synthetic aperture radar (SAR) backscatter data from Envisat ASAR and ALOS Palsar, respectively, have been processed, analysed and used for forest and forest change mapping over a study side in Liwale District in Lindi Region, Tanzania. Land cover observations from forest inventory plots of the National Forestry Resources Monitoring and Assessment (NAFORMA) project have been used for training Gaussian Mixture Models and k-means classifier that have been combined in order to map the study region into forest, woodland and non-forest areas. Maximum forest and woodland extension masks have been extracted by classifying maximum backscatter mosaics in HH and HV polarizations from the 2007-2011 ALOS Palsar coverage and could be used to map efficiently inter-annual forest change by filtering out changes in non-forest areas. Envisat ASAR APS (alternate polarization mode) have also been analysed with the aim to improve the forest/woodland/non-forest classification based on ALOS Palsar. Clearly, the combination of C-band SAR and L-band SAR provides useful information in order to smooth the classification and especially increase the woodland class, but an overall improvement for the wall-to-wall land type classification has yet to be confirmed. The quality assessment and validation of the results is done with very high resolution optical data from WorldView, Ikonos and RapidEye, and NAFORMA field observations.

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Xiaodong Huang ◽  
Beth Ziniti ◽  
Michael H. Cosh ◽  
Michele Reba ◽  
Jinfei Wang ◽  
...  

Soil moisture is a key indicator to assess cropland drought and irrigation status as well as forecast production. Compared with the optical data which are obscured by the crop canopy cover, the Synthetic Aperture Radar (SAR) is an efficient tool to detect the surface soil moisture under the vegetation cover due to its strong penetration capability. This paper studies the soil moisture retrieval using the L-band polarimetric Phased Array-type L-band SAR 2 (PALSAR-2) data acquired over the study region in Arkansas in the United States. Both two-component model-based decomposition (SAR data alone) and machine learning (SAR + optical indices) methods are tested and compared in this paper. Validation using independent ground measurement shows that the both methods achieved a Root Mean Square Error (RMSE) of less than 10 (vol.%), while the machine learning methods outperform the model-based decomposition, achieving an RMSE of 7.70 (vol.%) and R2 of 0.60.


2020 ◽  
Vol 12 (3) ◽  
pp. 369 ◽  
Author(s):  
Alessandro Lapini ◽  
Simone Pettinato ◽  
Emanuele Santi ◽  
Simonetta Paloscia ◽  
Giacomo Fontanelli ◽  
...  

In this paper, multifrequency synthetic aperture radar (SAR) images from ALOS/PALSAR, ENVISAT/ASAR and Cosmo-SkyMed sensors were studied for forest classification in a test area in Central Italy (San Rossore), where detailed in-situ measurements were available. A preliminary discrimination of the main land cover classes and forest types was carried out by exploiting the synergy among L-, C- and X-bands and different polarizations. SAR data were preliminarily inspected to assess the capabilities of discriminating forest from non-forest and separating broadleaf from coniferous forests. The temporal average backscattering coefficient ( σ ¯ °) was computed for each sensor-polarization pair and labeled on a pixel basis according to the reference map. Several classification methods based on the machine learning framework were applied and validated considering different features, in order to highlight the contribution of bands and polarizations, as well as to assess the classifiers’ performance. The experimental results indicate that the different surface types are best identified by using all bands, followed by joint L- and X-bands. In the former case, the best overall average accuracy (83.1%) is achieved by random forest classification. Finally, the classification maps on class edges are discussed to highlight the misclassification errors.


2019 ◽  
Vol 11 (5) ◽  
pp. 556 ◽  
Author(s):  
Charlie Marshak ◽  
Marc Simard ◽  
Michael Denbina

We present a flexible methodology to identify forest loss in synthetic aperture radar (SAR) L-band ALOS/PALSAR images. Instead of single pixel analysis, we generate spatial segments (i.e., superpixels) based on local image statistics to track homogeneous patches of forest across a time-series of ALOS/PALSAR images. Forest loss detection is performed using an ensemble of Support Vector Machines (SVMs) trained on local radar backscatter features derived from superpixels. This method is applied to time-series of ALOS-1 and ALOS-2 radar images over a boreal forest within the Laurentides Wildlife Reserve in Québec, Canada. We evaluate four spatial arrangements including (1) single pixels, (2) square grid cells, (3) superpixels based on segmentation of the radar images, and (4) superpixels derived from ancillary optical Landsat imagery. Detection of forest loss using superpixels outperforms single pixel and regular square grid cell approaches, especially when superpixels are generated from ancillary optical imagery. Results are validated with official Québec forestry data and Hansen et al. forest loss products. Our results indicate that this approach can be applied to monitor forest loss across large study areas using L-band radar instruments such as ALOS/PALSAR, particularly when combined with superpixels generated from ancillary optical data.


2021 ◽  
Vol 13 (4) ◽  
pp. 809
Author(s):  
Emanuele Santi ◽  
Marta Chiesi ◽  
Giacomo Fontanelli ◽  
Alessandro Lapini ◽  
Simonetta Paloscia ◽  
...  

In this paper, multi-frequency synthetic aperture radar (SAR) data at L- and C-bands (ALOS PALSAR and Envisat/ASAR) were used to estimate forest biomass in Tuscany, in Central Italy. The ground measurements of woody volume (WV, in m3/ha), which can be considered as a proxy of forest biomass, were retrieved from the Italian National Forest Inventory (NFI). After a preliminary investigation to assess the sensitivity of backscatter at C- and L-bands to forest biomass, an approach based on an artificial neural network (ANN) was implemented. The ANN was trained using the backscattering coefficient at L-band (ALOS PALSAR, HH and HV polarization) and C-band (Envisat ASAR in HH polarization) as inputs. Spatially distributed WV values for the entire test area were derived by the integration (fusion) of a canopy height map derived from the Ice, Cloud, and Land Elevation Geoscience Laser Altimeter System (ICESat GLAS) and the NFI data, in order to build a significant ground truth dataset for the training stage. The analysis of the backscattering sensitivity to WV showed a moderate correlation at L-band and was almost negligible at C-band. Despite this, the ANN algorithm was able to exploit the synergy of SAR frequencies and polarizations, estimating WV with average Pearson’s correlation coefficient (R) = 0.96 and root mean square error (RMSE) ≃ 39 m3/ha when applied to the test dataset and average R = 0.86 and RMSE ≃ 75 m3/ha when validated on the direct measurements from the NFI. Considering the heterogeneity of the scenario (Mediterranean mixed forests in hilly landscape) and the small amount of available ground measurements with respect to the spatial variability of different plots, the obtained results can be considered satisfactory. Moreover, the successful use of WV from global maps for implementing the algorithm suggests the possibility to apply the algorithm to wider areas or even to global scales.


2014 ◽  
Vol 6 (2) ◽  
pp. 1605-1633 ◽  
Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Maria Budzynska ◽  
Monika Tomaszewska ◽  
Maciej Bartold ◽  
Martyna Gatkowska ◽  
...  

2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 957
Author(s):  
Branislav Popović ◽  
Lenka Cepova ◽  
Robert Cep ◽  
Marko Janev ◽  
Lidija Krstanović

In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 518
Author(s):  
Osamu Komori ◽  
Shinto Eguchi

Clustering is a major unsupervised learning algorithm and is widely applied in data mining and statistical data analyses. Typical examples include k-means, fuzzy c-means, and Gaussian mixture models, which are categorized into hard, soft, and model-based clusterings, respectively. We propose a new clustering, called Pareto clustering, based on the Kolmogorov–Nagumo average, which is defined by a survival function of the Pareto distribution. The proposed algorithm incorporates all the aforementioned clusterings plus maximum-entropy clustering. We introduce a probabilistic framework for the proposed method, in which the underlying distribution to give consistency is discussed. We build the minorize-maximization algorithm to estimate the parameters in Pareto clustering. We compare the performance with existing methods in simulation studies and in benchmark dataset analyses to demonstrate its highly practical utilities.


Sign in / Sign up

Export Citation Format

Share Document