scholarly journals Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France

2018 ◽  
Vol 10 (8) ◽  
pp. 1217 ◽  
Author(s):  
Emile Ndikumana ◽  
Dinh Ho Tong Minh ◽  
Nicolas Baghdadi ◽  
Dominique Courault ◽  
Laure Hossard

The development and improvement of methods to map agricultural land cover are currently major challenges, especially for radar images. This is due to the speckle noise nature of radar, leading to a less intensive use of radar rather than optical images. The European Space Agency Sentinel-1 constellation, which recently became operational, is a satellite system providing global coverage of Synthetic Aperture Radar (SAR) with a 6-days revisit period at a high spatial resolution of about 20 m. These data are valuable, as they provide spatial information on agricultural crops. The aim of this paper is to provide a better understanding of the capabilities of Sentinel-1 radar images for agricultural land cover mapping through the use of deep learning techniques. The analysis is carried out on multitemporal Sentinel-1 data over an area in Camargue, France. The data set was processed in order to produce an intensity radar data stack from May 2017 to September 2017. We improved this radar time series dataset by exploiting temporal filtering to reduce noise, while retaining as much as possible the fine structures present in the images. We revealed that even with classical machine learning approaches (K nearest neighbors, random forest, and support vector machines), good performance classification could be achieved with F-measure/Accuracy greater than 86% and Kappa coefficient better than 0.82. We found that the results of the two deep recurrent neural network (RNN)-based classifiers clearly outperformed the classical approaches. Finally, our analyses of the Camargue area results show that the same performance was obtained with two different RNN-based classifiers on the Rice class, which is the most dominant crop of this region, with a F-measure metric of 96%. These results thus highlight that in the near future these RNN-based techniques will play an important role in the analysis of remote sensing time series.

2021 ◽  
Vol 13 (19) ◽  
pp. 3953
Author(s):  
Patrick Clifton Gray ◽  
Diego F. Chamorro ◽  
Justin T. Ridge ◽  
Hannah Rae Kerner ◽  
Emily A. Ury ◽  
...  

The ability to accurately classify land cover in periods before appropriate training and validation data exist is a critical step towards understanding subtle long-term impacts of climate change. These trends cannot be properly understood and distinguished from individual disturbance events or decadal cycles using only a decade or less of data. Understanding these long-term changes in low lying coastal areas, home to a huge proportion of the global population, is of particular importance. Relatively simple deep learning models that extract representative spatiotemporal patterns can lead to major improvements in temporal generalizability. To provide insight into major changes in low lying coastal areas, our study (1) developed a recurrent convolutional neural network that incorporates spectral, spatial, and temporal contexts for predicting land cover class, (2) evaluated this model across time and space and compared this model to conventional Random Forest and Support Vector Machine methods as well as other deep learning approaches, and (3) applied this model to classify land cover across 20 years of Landsat 5 data in the low-lying coastal plain of North Carolina, USA. We observed striking changes related to sea level rise that support evidence on a smaller scale of agricultural land and forests transitioning into wetlands and “ghost forests”. This work demonstrates that recurrent convolutional neural networks should be considered when a model is needed that can generalize across time and that they can help uncover important trends necessary for understanding and responding to climate change in vulnerable coastal regions.


2019 ◽  
Vol 11 (12) ◽  
pp. 247
Author(s):  
Xin Zhou ◽  
Peixin Dong ◽  
Jianping Xing ◽  
Peijia Sun

Accurate prediction of bus arrival times is a challenging problem in the public transportation field. Previous studies have shown that to improve prediction accuracy, more heterogeneous measurements provide better results. So what other factors should be added into the prediction model? Traditional prediction methods mainly use the arrival time and the distance between stations, but do not make full use of dynamic factors such as passenger number, dwell time, bus driving efficiency, etc. We propose a novel approach that takes full advantage of dynamic factors. Our approach is based on a Recurrent Neural Network (RNN). The experimental results indicate that a variety of prediction algorithms (such as Support Vector Machine, Kalman filter, Multilayer Perceptron, and RNN) have significantly improved performance after using dynamic factors. Further, we introduce RNN with an attention mechanism to adaptively select the most relevant input factors. Experiments demonstrate that the prediction accuracy of RNN with an attention mechanism is better than RNN with no attention mechanism when there are heterogeneous input factors. The experimental results show the superior performances of our approach on the data set provided by Jinan Public Transportation Corporation.


2013 ◽  
Vol 13 (4) ◽  
pp. 1077-1083 ◽  
Author(s):  
M. Akhoondzadeh

Abstract. In this paper, a number of classical and intelligent methods, including interquartile, autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and support vector machine (SVM), have been proposed to quantify potential thermal anomalies around the time of the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4). The duration of the data set, which is comprised of Aqua-MODIS land surface temperature (LST) night-time snapshot images, is 62 days. In order to quantify variations of LST data obtained from satellite images, the air temperature (AT) data derived from the meteorological station close to the earthquake epicenter has been taken into account. For the models examined here, results indicate the following: (i) ARIMA models, which are the most widely used in the time series community for short-term forecasting, are quickly and easily implemented, and can efficiently act through linear solutions. (ii) A multilayer perceptron (MLP) feed-forward neural network can be a suitable non-parametric method to detect the anomalous changes of a non-linear time series such as variations of LST. (iii) Since SVMs are often used due to their many advantages for classification and regression tasks, it can be shown that, if the difference between the predicted value using the SVM method and the observed value exceeds the pre-defined threshold value, then the observed value could be regarded as an anomaly. (iv) ANN and SVM methods could be powerful tools in modeling complex phenomena such as earthquake precursor time series where we may not know what the underlying data generating process is. There is good agreement in the results obtained from the different methods for quantifying potential anomalies in a given LST time series. This paper indicates that the detection of the potential thermal anomalies derive credibility from the overall efficiencies and potentialities of the four integrated methods.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3069 ◽  
Author(s):  
Beom-Hun Kim ◽  
Jae-Young Pyun

Securing personal authentication is an important study in the field of security. Particularly, fingerprinting and face recognition have been used for personal authentication. However, these systems suffer from certain issues, such as fingerprinting forgery, or environmental obstacles. To address forgery or spoofing identification problems, various approaches have been considered, including electrocardiogram (ECG). For ECG identification, linear discriminant analysis (LDA), support vector machine (SVM), principal component analysis (PCA), deep recurrent neural network (DRNN), and recurrent neural network (RNN) have been conventionally used. Certain studies have shown that the RNN model yields the best performance in ECG identification as compared with the other models. However, these methods require a lengthy input signal for high accuracy. Thus, these methods may not be applied to a real-time system. In this study, we propose using bidirectional long short-term memory (LSTM)-based deep recurrent neural networks (DRNN) through late-fusion to develop a real-time system for ECG-based biometrics identification and classification. We suggest a preprocessing procedure for the quick identification and noise reduction, such as a derivative filter, moving average filter, and normalization. We experimentally evaluated the proposed method using two public datasets: MIT-BIH Normal Sinus Rhythm (NSRDB) and MIT-BIH Arrhythmia (MITDB). The proposed LSTM-based DRNN model shows that in NSRDB, the overall precision was 100%, recall was 100%, accuracy was 100%, and F1-score was 1. For MITDB, the overall precision was 99.8%, recall was 99.8%, accuracy was 99.8%, and F1-score was 0.99. Our experiments demonstrate that the proposed model achieves an overall higher classification accuracy and efficiency compared with the conventional LSTM approach.


Author(s):  
Elisa Mussumeci ◽  
Flávio Codeço Coelho

AbstractEffective management of seasonal diseases such as dengue fever depends on timely deployment of control measures prior to the high transmission season. As the epidemic season fluctuates from year to year, the availability of accurate forecasts of incidence can be decisive in attaining control of such diseases. Obtaining such forecasts from classical time series models has proven a difficult task. Here we propose and compare machine learning models incorporating feature selection,such as LASSO and Random Forest regression with LSTM a deep recurrent neural network, to forecast weekly dengue incidence in 790 cities in Brazil. We use multivariate time-series as predictors and also utilize time series from similar cities to capture the spatial component of disease transmission. Among the compared models, the LSTM recurrent neural network model displayed the smallest predictive errors in predicting incidence of dengue out of sample, in cities of different sizes.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


Sign in / Sign up

Export Citation Format

Share Document