scholarly journals Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas

2019 ◽  
Vol 11 (11) ◽  
pp. 1319 ◽  
Author(s):  
Paulina Bartkowiak ◽  
Mariapina Castelli ◽  
Claudia Notarnicola

In this study, we evaluated three different downscaling approaches to enhance spatial resolution of thermal imagery over Alpine vegetated areas. Due to the topographical and land-cover complexity and to the sparse distribution of meteorological stations in the region, the remotely-sensed land surface temperature (LST) at regional scale is of major area of interest for environmental applications. Even though the Moderate Resolution Imaging Spectroradiometer (MODIS) LST fills the gap regarding high temporal resolution and length of the time-series, its spatial resolution is not adequate for mountainous areas. Given this limitation, random forest algorithm for downscaling LST to 250 m spatial resolution was evaluated. This study exploits daily MODIS LST with a spatial resolution of 1 km to obtain sub-pixel information at 250 m spatial resolution. The nonlinear relationship between coarse resolution MODIS LST (CR) and fine resolution (FR) explanatory variables was performed by building three different models including: (i) all pixels (BM), (ii) only pixels with more than 90% of vegetation content (EM1) and (iii) only pixels with 75% threshold of homogeneity for vegetated land-cover classes (EM2). We considered normalized difference vegetation index (NDVI) and digital elevation model (DEM) as predictors. The performances of the thermal downscaling methods were evaluated by the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) between the downscaled dataset and Landsat LST. Validation indicated that the error values for vegetation fraction (EM1, EM2) were smaller than for basic modelling (BM). BM model determined averaged RMSE of 2.3 K and MAE of 1.8 K. Enhanced methods (EM1 and EM2) gave slightly better results yielding 2.2 K and 1.7 K for RMSE and MAE, respectively. In contrast to the EMs, BM showed a reduction of 22% and 18% of RMSE and MAE respectively with regard to Landsat and the original MODIS LST. Despite some limitations, mainly due to cloud contamination effect and coarse resolution pixel heterogeneity, random forest downscaling exhibits a large potential for producing improved LST maps.

Author(s):  
C. Cruz ◽  
A. C. Blanco ◽  
J. Babaan ◽  
J. A. Cruz ◽  
R. R. Sta. Ana ◽  
...  

Abstract. The advancement of remote sensing technologies is a huge advantage in various environmental applications including the monitoring of the rapid development in an urban area. This study aims to estimate the composition of the different classes (vegetation, impervious surfaces, soil) in Metro Manila, Philippines using a 300-meter spatial resolution Sentinel-3 Ocean and Land Colour Instrument image. The relationship between these land cover fractions with the spatial distribution of land surface temperature at this scale is evaluated. Sentinel-3 image has a higher spectral resolution (i.e. 21 bands), as compared with other Landsat and Sentinel missions, which is a requirement for an accurate cover mapping. Linear Spectral Unmixing (LSU), a sub-pixel classification method, was employed in identifying the fractional components in the image based on their spectral characteristics. Field survey using spectroradiometer was conducted to acquire spectral signatures of an impervious surface, vegetation, and soil which were used as the endmembers in the unmixing process. To assess the accuracy of the resulting vegetation fractional image, this was compared with a separate land cover pixel-based classification result using a 3-meter high spatial resolution PlanetScope image and with another vegetation index product of Sentinel-3. The results indicate that the recently available Sentinel-3 image can accurately estimate vegetation fraction with R2 = 0.84 and 0.99, respectively. In addition, the land surface temperature (LST) retrieved from Climate Engine is negatively correlated with the vegetation fraction cover (R2 = 0.81) and positively correlated with the impervious surface fraction cover (R2 = 0.66). Soil, on the other hand, has no correlation with the LST.


2021 ◽  
Vol 13 (11) ◽  
pp. 2211
Author(s):  
Shuo Xu ◽  
Jie Cheng ◽  
Quan Zhang

Land surface temperature (LST) is an important parameter for mirroring the water–heat exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively low. In this study, we developed a TIR and PWM LST fusion method on based the random forest (RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition, and solar radiation, these variables were selected as candidate auxiliary variables to establish the best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01° can be obtained.


2020 ◽  
Author(s):  
Nikos Alexandris ◽  
Matteo Piccardo ◽  
Vasileios Syrris ◽  
Alessandro Cescatti ◽  
Gregory Duveiller

<p>The frequency of extreme heat related events is rising. This places the ever growing number of urban dwellers at higher risk. Quantifying these phenomena is important for the development and monitoring of climate change adaptation and mitigation policies. In this context, earth observations offer increasing opportunities to assess these phenomena with an unprecedented level of accuracy and spatial reach. Satellite thermal imaging systems acquire Land Surface Temperature (LST) which is fundamental to run models that study for example hotspots and heatwaves in urban environments.</p><p>Current instruments include TIRS on board Landsat 8 and MODIS on board of Terra satellites. These provide LST products on a monthly basis at 100m and twice per day at 1km respectively. Other sensors on board geostationary satellites, such as MSG and GOES-R, produce sub-hourly thermal images. For example the SEVIRI instrument onboard MSG, captures images every 15 minutes. However, this is done at an even coarser spatial resolution, which is 3 to 5 km in the case of SEVIRI. Nevertheless, none of the existing systems can capture LST synchronously with fine spatial resolution at a high temporal frequency, which is a prerequisite for monitoring heat stress in urban environments.</p><p>Combining LST time series of high temporal resolution (i.e. sub-daily MODIS- or SEVIRI-derived data) with products of fine spatial resolution (i.e. Landsat 8 products), and potentially other related variables (i.e. reflectance, spectral indices, land cover information, terrain parameters and local climatic variables), facilitates the downscaling of LST estimations. Nonetheless, considering the complexity of how distinct surfaces within a city heat-up differently during the course of a day, such a downscaling is meaningful for practically synchronous observations (e.g. Landsat-8 and MODIS Terra’s morning observations).</p><p>The recently launched ECOSTRESS mission provides multiple times in a day high spatial resolution thermal imagery at 70m. Albeit, recording the same locations on Earth every few days at varying times. We explore the associations between ECOSTRESS and Landsat-8 thermal data, based on the incoming radiation load and distinct surface properties characterised from other datasets. In our approach, first we upscale ECOSTRESS data to simulate Landsat-8 images at moments that coincide the acquisition times of other sensors products. In a second step, using the simulated Landsat-8 images, we downscale LST products acquired at later times, such as MODIS Aqua (ca. 13:30) or even the hourly MSG data. This composite downscaling procedure enables an enhanced LST estimation that opens the way for better diagnostics of the heat stress in urban landscapes.</p><p>In this study we discuss in detail the concepts of our approach and present preliminary results produced with the JEODPP, JRC's high throughput computing platform.</p>


Author(s):  
M. R. Saradjian ◽  
Sh. Sherafati

Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.


2020 ◽  
Author(s):  
Maite Lezama Valdes ◽  
Marwan Katurji ◽  
Hanna Meyer

<p>Anthropogenic Climate Change is expected to take a toll on the Antarctic environment and its biodiversity, which is concentrated on the continent’s few ice-free areas, such as the McMurdo Dry Valleys (MDV). To model the current terrestrial habitat distribution and predict possible climate induced changes, high spatial and temporal resolution abiotic variables, especially land surface temperature (LST) and soil moisture are needed, but are currently unavailable.</p><p>The aim of this project is to fill this gap and create a high resolution LST dataset of the Antarctic Dry Valleys. This variable is acquired in a high temporal resolution (sub-daily) by the MODIS sensor aboard Terra and Aqua satellites. However, as LST varies greatly in space, the spatial resolution provided by this data source (1000 m) is too low to give a meaningful impression of LST and to study biodiversity patterns. Therefore, we use data from Landsat and ASTER sensors as a reference to downscale MODIS LST to a spatial resolution of 30 m. 7 year’s worth of satellite data as well as terrain-derived auxiliary variables went into the development of the model, which predicts 30 m LST for the Antarctic Dry Valleys. </p><p>To model complex relations between terrain, radiation, land cover and LST, machine learning models are used. Multiple algorithms (Random Forest, NN, SVM, Gradient Boosting) are compared to find the best approach for predicting high resolution LST based on MODIS data. Using the best performing model, a daily dataset is created that provides LST for the Antarctic Dry Valleys from 2002 on.</p>


2021 ◽  
Author(s):  
Ruodan Zhuang ◽  
Salvatore Manfreda ◽  
Yijian Zeng ◽  
Nunzio Romano ◽  
Eyal Ben Dor ◽  
...  

<p>Soil moisture (SM) is an essential element in the hydrological cycle influencing land-atmosphere interactions and rainfall-runoff processes. High-resolution mapping of SM at field scale is vital for understanding spatial and temporal behavior of water availability in agriculture. Unmanned Arial Systems (UAS) offer an extraordinary opportunity to bridge the existing gap between point-scale field observations and satellite remote sensing providing high spatial details at relatively low costs. Moreover, this data can help the construction of downscaling models to generate high-resolution SM maps. For instance, random Forest (RF) regression model can link the land surface features and SM to identify the importance level of each predictor.</p><p>The RF regression model has been tested using a combination of satellite imageries, UAS data and point measurements collected on the experimental area Monteforte Cilento site (MFC2) in the Alento river basin (Campania, Italy) which is an 8 hectares cropland area (covered by walnuts, cherry, and olive trees). This area has been selected given the number of long-term studies on the vadose zone that have been conducted across a range of spatial scales.</p><p>The coarse resolution data cover from Jan 2015 to Dec 2019 and include SENTINEL-1 CSAR 1km SM product, 1km Land surface temperature and NDVI products from MODIS and 30m thermal band (brightness temperature), red and green band data (atmospherically corrected surface reflectance) from LANDSAT-8, and SRTM DEM from NASA. High-resolution land-surface features data from UAS-mounted optical, thermal, multispectral, and hyperspectral sensors were used to generate high-resolution SM and related soil attributes.</p><p>It is to note that the available satellite-based soil moisture data has a coarse resolution of 1km while the UAS-based land surface features of the extremely high resolution of 16cm. We deployed a two-step downscaling approach to address the smooth effect of spatial averaging of soil moisture, which depends on different elements at small and large scale. Specifically, different combinations of predictors were adopted for different scales of gridded soil moisture data. For example, in the downscaling procedure from 1km resolution to 30m resolution, precipitation, land-surface temperature (LST), vegetation indices (VIs), and elevation were used while LST, VIs, slope, and topographic index were selected for the downscaling from 30m to 16cm resolution. Indeed, features controlling the spatial distributions of soil moisture at different scale reflect the characteristics of the physical process: i) the surface elevation and rainfall patterns control the first downscaling model; ii) the topographic convergence and local slope become more relevant to reach a more detailed resolution. In conclusion, the study highlighted that RF regression model is able to interpret fairly well the spatial patterns of soil moisture at the scale of 30m starting from a resolution of 1km, while it is highlighted that the second downscaling step (up to few centimeters) is much more complex and requires further studies.</p><p>This research is a part of EU COST-Action “HARMONIOUS: Harmonization of UAS techniques for agricultural and natural ecosystems monitoring”.</p><p><strong>Keywords:</strong> soil moisture, downscaling, Unmanned Aerial Systems, random forest, HARMONIOUS</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


Sign in / Sign up

Export Citation Format

Share Document