scholarly journals A Model-Dependent Method for Monitoring Subtle Changes in Vegetation Height in the Boreal–Alpine Ecotone Using Bi-Temporal, Three Dimensional Point Data from Airborne Laser Scanning

2019 ◽  
Vol 11 (15) ◽  
pp. 1804
Author(s):  
Erik Næsset ◽  
Terje Gobakken ◽  
Ronald E. McRoberts

The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may subsequently be used to monitor vegetation and tree height change with detailed temporal and geographical resolutions. A method was developed with particular focus on statistically rigorous estimators of uncertainty for change estimates. The method employed model-dependent statistical inference. The method was demonstrated in a 12 ha study site in a boreal–alpine tree line in southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate change. By following the area-based approach, predictions were produced for every individual 2 m2 population element that tessellated the study area. Two demonstrations of the method are provided in which separate height change estimates were calculated for domains of size 1.5 ha or greater. Differences in height change estimates among such small domains illustrate how change patterns may vary over the landscape. Model-dependent mean square error estimates for the height change estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual covariance are provided. Findings suggested that the two latter sources of uncertainty could be ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for demonstration purposes, and thus may potentially be used to monitor tree line migration over time.

Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2021 ◽  
Author(s):  
Jakob J. Assmann ◽  
Jesper E. Moeslund ◽  
Urs A. Treier ◽  
Signe Normand

Abstract. Biodiversity studies could strongly benefit from three-dimensional data on ecosystem structure derived from contemporary remote sensing technologies, such as Light Detection and Ranging (LiDAR). Despite the increasing availability of such data at regional and national scales, the average ecologist has been limited in accessing them due to high requirements on computing power and remote-sensing knowledge. We processed Denmark's publicly available national Airborne Laser Scanning (ALS) data set acquired in 2014/15 together with the accompanying elevation model to compute 70 rasterized descriptors of interest for ecological studies. With a grain size of 10 m, these data products provide a snapshot of high-resolution measures including vegetation height, structure and density, as well as topographic descriptors including elevation, aspect, slope and wetness across more than forty thousand square kilometres covering almost all of Denmark's terrestrial surface. The resulting data set is comparatively small (~ 87 GB, compressed 16.4 GB) and the raster data can be readily integrated into analytical workflows in software familiar to many ecologists (GIS software, R, Python). Source code and documentation for the processing workflow are openly available via a code repository, allowing for transfer to other ALS data sets, as well as modification or re-calculation of future instances of Denmark’s national ALS data set. We hope that our high-resolution ecological vegetation and terrain descriptors (EcoDes-DK15) will serve as an inspiration for the publication of further such data sets covering other countries and regions and that our rasterized data set will provide a baseline of the ecosystem structure for current and future studies of biodiversity, within Denmark and beyond.


Author(s):  
M. Wieser ◽  
M. Hollaus ◽  
G. Mandlburger ◽  
P. Glira ◽  
N. Pfeifer

This study analyses the underestimation of tree and shrub heights for different airborne laser scanner systems and point cloud distribution within the vegetation column. Reference data was produced by a novel UAV-borne laser scanning (ULS) with a high point density in the complete vegetation column. With its physical parameters (e.g. footprint) and its relative accuracy within the block as stated in Section 2.2 the reference data is supposed to be highly suitable to detect the highest point of the vegetation. An airborne topographic (ALS) and topo-bathymetric (ALB) system were investigated. All data was collected in a period of one month in leaf-off condition, while the dominant tree species in the study area are deciduous trees. By robustly estimating the highest 3d vegetation point of each laser system the underestimation of the vegetation height was examined in respect to the ULS reference data. This resulted in a higher under-estimation of the airborne topographic system with 0.60 m (trees) and 0.55 m (shrubs) than for the topo-bathymetric system 0.30 m (trees) and 0.40 m (shrubs). The degree of the underestimation depends on structural characteristics of the vegetation itself and physical specification of the laser system.


Author(s):  
M. Wieser ◽  
M. Hollaus ◽  
G. Mandlburger ◽  
P. Glira ◽  
N. Pfeifer

This study analyses the underestimation of tree and shrub heights for different airborne laser scanner systems and point cloud distribution within the vegetation column. Reference data was produced by a novel UAV-borne laser scanning (ULS) with a high point density in the complete vegetation column. With its physical parameters (e.g. footprint) and its relative accuracy within the block as stated in Section 2.2 the reference data is supposed to be highly suitable to detect the highest point of the vegetation. An airborne topographic (ALS) and topo-bathymetric (ALB) system were investigated. All data was collected in a period of one month in leaf-off condition, while the dominant tree species in the study area are deciduous trees. By robustly estimating the highest 3d vegetation point of each laser system the underestimation of the vegetation height was examined in respect to the ULS reference data. This resulted in a higher under-estimation of the airborne topographic system with 0.60 m (trees) and 0.55 m (shrubs) than for the topo-bathymetric system 0.30 m (trees) and 0.40 m (shrubs). The degree of the underestimation depends on structural characteristics of the vegetation itself and physical specification of the laser system.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


2018 ◽  
Vol 7 (9) ◽  
pp. 342 ◽  
Author(s):  
Adam Salach ◽  
Krzysztof Bakuła ◽  
Magdalena Pilarska ◽  
Wojciech Ostrowski ◽  
Konrad Górski ◽  
...  

In this paper, the results of an experiment about the vertical accuracy of generated digital terrain models were assessed. The created models were based on two techniques: LiDAR and photogrammetry. The data were acquired using an ultralight laser scanner, which was dedicated to Unmanned Aerial Vehicle (UAV) platforms that provide very dense point clouds (180 points per square meter), and an RGB digital camera that collects data at very high resolution (a ground sampling distance of 2 cm). The vertical error of the digital terrain models (DTMs) was evaluated based on the surveying data measured in the field and compared to airborne laser scanning collected with a manned plane. The data were acquired in summer during a corridor flight mission over levees and their surroundings, where various types of land cover were observed. The experiment results showed unequivocally, that the terrain models obtained using LiDAR technology were more accurate. An attempt to assess the accuracy and possibilities of penetration of the point cloud from the image-based approach, whilst referring to various types of land cover, was conducted based on Real Time Kinematic Global Navigation Satellite System (GNSS-RTK) measurements and was compared to archival airborne laser scanning data. The vertical accuracy of DTM was evaluated for uncovered and vegetation areas separately, providing information about the influence of the vegetation height on the results of the bare ground extraction and DTM generation. In uncovered and low vegetation areas (0–20 cm), the vertical accuracies of digital terrain models generated from different data sources were quite similar: for the UAV Laser Scanning (ULS) data, the RMSE was 0.11 m, and for the image-based data collected using the UAV platform, it was 0.14 m, whereas for medium vegetation (higher than 60 cm), the RMSE from these two data sources were 0.11 m and 0.36 m, respectively. A decrease in the accuracy of 0.10 m, for every 20 cm of vegetation height, was observed for photogrammetric data; and such a dependency was not noticed in the case of models created from the ULS data.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3347 ◽  
Author(s):  
Zhishuang Yang ◽  
Bo Tan ◽  
Huikun Pei ◽  
Wanshou Jiang

The classification of point clouds is a basic task in airborne laser scanning (ALS) point cloud processing. It is quite a challenge when facing complex observed scenes and irregular point distributions. In order to reduce the computational burden of the point-based classification method and improve the classification accuracy, we present a segmentation and multi-scale convolutional neural network-based classification method. Firstly, a three-step region-growing segmentation method was proposed to reduce both under-segmentation and over-segmentation. Then, a feature image generation method was used to transform the 3D neighborhood features of a point into a 2D image. Finally, feature images were treated as the input of a multi-scale convolutional neural network for training and testing tasks. In order to obtain performance comparisons with existing approaches, we evaluated our framework using the International Society for Photogrammetry and Remote Sensing Working Groups II/4 (ISPRS WG II/4) 3D labeling benchmark tests. The experiment result, which achieved 84.9% overall accuracy and 69.2% of average F1 scores, has a satisfactory performance over all participating approaches analyzed.


2018 ◽  
Vol 10 (10) ◽  
pp. 1562 ◽  
Author(s):  
Kathryn Fankhauser ◽  
Nikolay Strigul ◽  
Demetrios Gatziolis

Forest inventories are constrained by resource-intensive fieldwork, while unmanned aerial systems (UASs) offer rapid, reliable, and replicable data collection and processing. This research leverages advancements in photogrammetry and market sensors and platforms to incorporate a UAS-based approach into existing forestry monitoring schemes. Digital imagery from a UAS was collected, photogrammetrically processed, and compared to in situ and aerial laser scanning (ALS)-derived plot tree counts and heights on a subsample of national forest plots in Oregon. UAS- and ALS-estimated tree counts agreed with each other (r2 = 0.96) and with field data (ALS r2 = 0.93, UAS r2 = 0.84). UAS photogrammetry also reasonably approximated mean plot tree height achieved by the field inventory (r2 = 0.82, RMSE = 2.92 m) and by ALS (r2 = 0.97, RMSE = 1.04 m). The use of both nadir-oriented and oblique UAS imagery as well as the availability of ALS-derived terrain descriptions likely sustain a robust performance of our approach across classes of canopy cover and tree height. It is possible to draw similar conclusions from any of the methods, suggesting that the efficient and responsive UAS method can enhance field measurement and ALS in longitudinal inventories. Additionally, advancing UAS technology and photogrammetry allows diverse users access to forest data and integrates updated methodologies with traditional forest monitoring.


2021 ◽  
Vol 11 ◽  
Author(s):  
David Pont ◽  
Heidi S. Dungey ◽  
Mari Suontama ◽  
Grahame T. Stovold

Phenotyping individual trees to quantify interactions among genotype, environment, and management practices is critical to the development of precision forestry and to maximize the opportunity of improved tree breeds. In this study we utilized airborne laser scanning (ALS) data to detect and characterize individual trees in order to generate tree-level phenotypes and tree-to-tree competition metrics. To examine our ability to account for environmental variation and its relative importance on individual-tree traits, we investigated the use of spatial models using ALS-derived competition metrics and conventional autoregressive spatial techniques. Models utilizing competition covariate terms were found to quantify previously unexplained phenotypic variation compared with standard models, substantially reducing residual variance and improving estimates of heritabilities for a set of operationally relevant traits. Models including terms for spatial autocorrelation and competition performed the best and were labelled ACE (autocorrelation-competition-error) models. The best ACE models provided statistically significant reductions in residuals ranging from −65.48% for tree height (H) to −21.03% for wood stiffness (A), and improvements in narrow sense heritabilities from 38.64% for H to 14.01% for A. Individual tree phenotyping using an ACE approach is therefore recommended for analyses of research trials where traits are susceptible to spatial effects.


2018 ◽  
Vol 8 (2) ◽  
pp. 20170039 ◽  
Author(s):  
Zhan Li ◽  
Michael Schaefer ◽  
Alan Strahler ◽  
Crystal Schaaf ◽  
David Jupp

The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens doors to study biophysical and biochemical properties of forested and agricultural ecosystems at more detailed scales.


Sign in / Sign up

Export Citation Format

Share Document