scholarly journals Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques

2019 ◽  
Vol 11 (16) ◽  
pp. 1916 ◽  
Author(s):  
Claudia Corradino ◽  
Gaetana Ganci ◽  
Annalisa Cappello ◽  
Giuseppe Bilotta ◽  
Alexis Hérault ◽  
...  

Accurate mapping of recent lava flows can provide significant insight into the development of flow fields that may aid in predicting future flow behavior. The task is challenging, due to both intrinsic properties of the phenomenon (e.g., lava flow resurfacing processes) and technical issues (e.g., the difficulty to survey a spatially extended lava flow with either aerial or ground instruments while avoiding hazardous locations). The huge amount of moderate to high resolution multispectral satellite data currently provides new opportunities for monitoring of extreme thermal events, such as eruptive phenomena. While retrieving boundaries of an active lava flow is relatively straightforward, problems arise when discriminating a recently cooled lava flow from older lava flow fields. Here, we present a new supervised classifier based on machine learning techniques to discriminate recent lava imaged in the MultiSpectral Imager (MSI) onboard Sentinel-2 satellite. Automated classification evaluates each pixel in a scene and then groups the pixels with similar values (e.g., digital number, reflectance, radiance) into a specified number of classes. Bands at the spatial resolution of 10 m (bands 2, 3, 4, 8) are used as input to the classifier. The training phase is performed on a small number of pixels manually labeled as covered by fresh lava, while the testing characterizes the entire lava flow field. Compared with ground-based measurements and actual lava flows of Mount Etna emplaced in 2017 and 2018, our automatic procedure provides excellent results in terms of accuracy, precision, and sensitivity.

2021 ◽  
Vol 14 (3) ◽  
pp. 1-21
Author(s):  
Roy Abitbol ◽  
Ilan Shimshoni ◽  
Jonathan Ben-Dov

The task of assembling fragments in a puzzle-like manner into a composite picture plays a significant role in the field of archaeology as it supports researchers in their attempt to reconstruct historic artifacts. In this article, we propose a method for matching and assembling pairs of ancient papyrus fragments containing mostly unknown scriptures. Papyrus paper is manufactured from papyrus plants and therefore portrays typical thread patterns resulting from the plant’s stems. The proposed algorithm is founded on the hypothesis that these thread patterns contain unique local attributes such that nearby fragments show similar patterns reflecting the continuations of the threads. We posit that these patterns can be exploited using image processing and machine learning techniques to identify matching fragments. The algorithm and system which we present support the quick and automated classification of matching pairs of papyrus fragments as well as the geometric alignment of the pairs against each other. The algorithm consists of a series of steps and is based on deep-learning and machine learning methods. The first step is to deconstruct the problem of matching fragments into a smaller problem of finding thread continuation matches in local edge areas (squares) between pairs of fragments. This phase is solved using a convolutional neural network ingesting raw images of the edge areas and producing local matching scores. The result of this stage yields very high recall but low precision. Thus, we utilize these scores in order to conclude about the matching of entire fragments pairs by establishing an elaborate voting mechanism. We enhance this voting with geometric alignment techniques from which we extract additional spatial information. Eventually, we feed all the data collected from these steps into a Random Forest classifier in order to produce a higher order classifier capable of predicting whether a pair of fragments is a match. Our algorithm was trained on a batch of fragments which was excavated from the Dead Sea caves and is dated circa the 1st century BCE. The algorithm shows excellent results on a validation set which is of a similar origin and conditions. We then tried to run the algorithm against a real-life set of fragments for which we have no prior knowledge or labeling of matches. This test batch is considered extremely challenging due to its poor condition and the small size of its fragments. Evidently, numerous researchers have tried seeking matches within this batch with very little success. Our algorithm performance on this batch was sub-optimal, returning a relatively large ratio of false positives. However, the algorithm was quite useful by eliminating 98% of the possible matches thus reducing the amount of work needed for manual inspection. Indeed, experts that reviewed the results have identified some positive matches as potentially true and referred them for further investigation.


2020 ◽  
Author(s):  
Victor Bacu ◽  
Teodor Stefanut ◽  
Dorian Gorgan

<p>Agricultural management relies on good, comprehensive and reliable information on the environment and, in particular, the characteristics of the soil. The soil composition, humidity and temperature can fluctuate over time, leading to migration of plant crops, changes in the schedule of agricultural work, and the treatment of soil by chemicals. Various techniques are used to monitor soil conditions and agricultural activities but most of them are based on field measurements. Satellite data opens up a wide range of solutions based on higher resolution images (i.e. spatial, spectral and temporal resolution). Due to this high resolution, satellite data requires powerful computing resources and complex algorithms. The need for up-to-date and high-resolution soil maps and direct access to this information in a versatile and convenient manner is essential for pedology and agriculture experts, farmers and soil monitoring organizations.</p><p>Unfortunately, the satellite image processing and interpretation are very particular to each area, time and season, and must be calibrated by the real field measurements that are collected periodically. In order to obtain a fairly good accuracy of soil classification at a very high resolution, without using interpolation methods of an insufficient number of measurements, the prediction based on artificial intelligence techniques could be used. The use of machine learning techniques is still largely unexplored, and one of the major challenges is the scalability of the soil classification models toward three main directions: (a) adding new spatial features (i.e. satellite wavelength bands, geospatial parameters, spatial features); (b) scaling from local to global geographical areas; (c) temporal complementarity (i.e. build up the soil description by samples of satellite data acquired along the time, on spring, on summer, in another year, etc.).</p><p>The presentation analysis some experiments and highlights the main issues on developing a soil classification model based on Sentinel-2 satellite data, machine learning techniques and high-performance computing infrastructures. The experiments concern mainly on the features and temporal scalability of the soil classification models. The research is carried out using the HORUS platform [1] and the HorusApp application [2], [3], which allows experts to scale the computation over cloud infrastructure.</p><p> </p><p>References:</p><p>[1] Gorgan D., Rusu T., Bacu V., Stefanut T., Nandra N., “Soil Classification Techniques in Transylvania Area Based on Satellite Data”. World Soils 2019 Conference, 2 - 3 July 2019, ESA-ESRIN, Frascati, Italy (2019).</p><p>[2] Bacu V., Stefanut T., Gorgan D., “Building soil classification maps using HorusApp and Sentinel-2 Products”, Proceedings of the Intelligent Computer Communication and Processing Conference – ICCP, in IEEE press (2019).</p><p>[3] Bacu V., Stefanut T., Nandra N., Rusu T., Gorgan D., “Soil classification based on Sentinel-2 Products using HorusApp application”, Geophysical Research Abstracts, Vol. 21, EGU2019-15746, 2019, EGU General Assembly (2019).</p>


Author(s):  
A. Montibeller ◽  
M. Vilela ◽  
F. Hino ◽  
P. Mallmann ◽  
M. Nadas ◽  
...  

Abstract. Riparian vegetation plays a key role in maintaining water quality and preserving the ecosystems along riverine systems, as they prevent soil erosion, retain water by increased infiltration, and act as a buffer zone between rivers and their surroundings. Within urban spaces, these areas have also an important role in preventing illegal occupation in areas of hydrologic risk, such as in floodplains. The goal of this research is to propose a framework for identifying areas of permanent protection associated with perennial drainage, utilizing satellite imagery and digital elevation models (DEM) in association with machine learning techniques. The specific objectives include the development of a decision tree to retrieve perennial drainage over high resolution, 1-meter DEM’s, and the development of digital image processing workflow to retrieve surface water bodies from Sentinel-2 imagery. In-situ information on perennial and ephemeral conditions of streams and rivers were obtained to validate our results, that happened in the first trimester of 2020. We propose a minimum of 7 days without precipitation prior to in-situ validation, for more accurate assessment of streamflow conditions, in order to minimize impacts of surface water runoff in flow regime. The proposed method will benefit decision makers by providing them with reliable information on drainage network and their buffer zones, as well as yield detailed mapping of the areas of permanent protection that are key to urban planning and management.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 197
Author(s):  
Claudia Corradino ◽  
Giuseppe Bilotta ◽  
Annalisa Cappello ◽  
Luigi Fortuna ◽  
Ciro Del Negro

Lava flow mapping has direct relevance to volcanic hazards once an eruption has begun. Satellite remote sensing techniques are increasingly used to map newly erupted lava, thanks to their capability to survey large areas with frequent revisit time and accurate spatial resolution. Visible and infrared satellite data are routinely used to detect the distributions of volcanic deposits and monitor thermal features, even if clouds are a serious obstacle for optical sensors, since they cannot be penetrated by optical radiation. On the other hand, radar satellite data have been playing an important role in surface change detection and image classification, being able to operate in all weather conditions, although their use is hampered by the special imaging geometry, the complicated scattering process, and the presence of speckle noise. Thus, optical and radar data are complementary data sources that can be used to map lava flows effectively, in addition to alleviating cloud obstruction and improving change detection performance. Here, we propose a machine learning approach based on the Google Earth Engine (GEE) platform to analyze simultaneously the images acquired by the synthetic aperture radar (SAR) sensor, on board of Sentinel-1 mission, and by optical and multispectral sensors of Landsat-8 missions and Multi-Spectral Imager (MSI), on board of Sentinel-2 mission. Machine learning classifiers, including K-means algorithm (K-means) and support vector machine (SVM), are used to map lava flows automatically from a combination of optical and SAR images. We describe the operation of this approach by using a retrospective analysis of two recent lava flow-forming eruptions at Mount Etna (Italy) and Fogo Island (Cape Verde). We found that combining both radar and optical imagery improved the accuracy and reliability of lava flow mapping. The results highlight the need to fully exploit the extraordinary potential of complementary satellite sensors to provide time-critical hazard information during volcanic eruptions.


2021 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Lampros Tasiopoulos ◽  
Marianthi Stefouli ◽  
Yorghos Voutos ◽  
Phivos Mylonas ◽  
Eleni Charou

Climate change could exacerbate floods on agricultural plains by increasing the frequency of extreme and adverse meteorological events. Flood extent maps could be a valuable source of information for agricultural land decision makers, risk management and emergency planning. We propose a method that combines various types of data and processing techniques in order to achieve accurate flood extent maps. The application aims to find the percentage of agricultural land that is covered by the floods through an automatic map estimation methodology based on the freely available Sentinel-2 (S2) satellite images and machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document