scholarly journals Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 197
Author(s):  
Claudia Corradino ◽  
Giuseppe Bilotta ◽  
Annalisa Cappello ◽  
Luigi Fortuna ◽  
Ciro Del Negro

Lava flow mapping has direct relevance to volcanic hazards once an eruption has begun. Satellite remote sensing techniques are increasingly used to map newly erupted lava, thanks to their capability to survey large areas with frequent revisit time and accurate spatial resolution. Visible and infrared satellite data are routinely used to detect the distributions of volcanic deposits and monitor thermal features, even if clouds are a serious obstacle for optical sensors, since they cannot be penetrated by optical radiation. On the other hand, radar satellite data have been playing an important role in surface change detection and image classification, being able to operate in all weather conditions, although their use is hampered by the special imaging geometry, the complicated scattering process, and the presence of speckle noise. Thus, optical and radar data are complementary data sources that can be used to map lava flows effectively, in addition to alleviating cloud obstruction and improving change detection performance. Here, we propose a machine learning approach based on the Google Earth Engine (GEE) platform to analyze simultaneously the images acquired by the synthetic aperture radar (SAR) sensor, on board of Sentinel-1 mission, and by optical and multispectral sensors of Landsat-8 missions and Multi-Spectral Imager (MSI), on board of Sentinel-2 mission. Machine learning classifiers, including K-means algorithm (K-means) and support vector machine (SVM), are used to map lava flows automatically from a combination of optical and SAR images. We describe the operation of this approach by using a retrospective analysis of two recent lava flow-forming eruptions at Mount Etna (Italy) and Fogo Island (Cape Verde). We found that combining both radar and optical imagery improved the accuracy and reliability of lava flow mapping. The results highlight the need to fully exploit the extraordinary potential of complementary satellite sensors to provide time-critical hazard information during volcanic eruptions.

2020 ◽  
Vol 12 (22) ◽  
pp. 3776
Author(s):  
Andrea Tassi ◽  
Marco Vizzari

Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources.


Author(s):  
V. P. Yadav ◽  
R. Prasad ◽  
R. Bala ◽  
A. K. Vishwakarma ◽  
S. A. Yadav ◽  
...  

Abstract. The leaf area index (LAI) is one of key variable of crops which plays important role in agriculture, ecology and climate change for global circulation models to compute energy and water fluxes. In the recent research era, the machine-learning algorithms have provided accurate computational approaches for the estimation of crops biophysical parameters using remotely sensed data. The three machine-learning algorithms, random forest regression (RFR), support vector regression (SVR) and artificial neural network regression (ANNR) were used to estimate the LAI for crops in the present study. The three different dates of Landsat-8 satellite images were used during January 2017 – March 2017 at different crops growth conditions in Varanasi district, India. The sampling regions were fully covered by major Rabi season crops like wheat, barley and mustard etc. In total pooled data, 60% samples were taken for the training of the algorithms and rest 40% samples were taken as testing and validation of the machinelearning regressions algorithms. The highest sensitivity of normalized difference vegetation index (NDVI) with LAI was found using RFR algorithms (R2 = 0.884, RMSE = 0.404) as compared to SVR (R2 = 0.847, RMSE = 0.478) and ANNR (R2 = 0.829, RMSE = 0.404). Therefore, RFR algorithms can be used for accurate estimation of LAI for crops using satellite data.


2021 ◽  
Vol 13 (7) ◽  
pp. 1349
Author(s):  
Laleh Ghayour ◽  
Aminreza Neshat ◽  
Sina Paryani ◽  
Himan Shahabi ◽  
Ataollah Shirzadi ◽  
...  

With the development of remote sensing algorithms and increased access to satellite data, generating up-to-date, accurate land use/land cover (LULC) maps has become increasingly feasible for evaluating and managing changes in land cover as created by changes to ecosystem and land use. The main objective of our study is to evaluate the performance of Support Vector Machine (SVM), Artificial Neural Network (ANN), Maximum Likelihood Classification (MLC), Minimum Distance (MD), and Mahalanobis (MH) algorithms and compare them in order to generate a LULC map using data from Sentinel 2 and Landsat 8 satellites. Further, we also investigate the effect of a penalty parameter on SVM results. Our study uses different kernel functions and hidden layers for SVM and ANN algorithms, respectively. We generated the training and validation datasets from Google Earth images and GPS data prior to pre-processing satellite data. In the next phase, we classified the images using training data and algorithms. Ultimately, to evaluate outcomes, we used the validation data to generate a confusion matrix of the classified images. Our results showed that with optimal tuning parameters, the SVM classifier yielded the highest overall accuracy (OA) of 94%, performing better for both satellite data compared to other methods. In addition, for our scenes, Sentinel 2 date was slightly more accurate compared to Landsat 8. The parametric algorithms MD and MLC provided the lowest accuracy of 80.85% and 74.68% for the data from Sentinel 2 and Landsat 8. In contrast, our evaluation using the SVM tuning parameters showed that the linear kernel with the penalty parameter 150 for Sentinel 2 and the penalty parameter 200 for Landsat 8 yielded the highest accuracies. Further, ANN classification showed that increasing the hidden layers drastically reduces classification accuracy for both datasets, reducing zero for three hidden layers.


2021 ◽  
Vol 10 (6) ◽  
pp. 371
Author(s):  
Nam-Thang Ha ◽  
Merilyn Manley-Harris ◽  
Tien-Dat Pham ◽  
Ian Hawes

Seagrass provides a wide range of essential ecosystem services, supports climate change mitigation, and contributes to blue carbon sequestration. This resource, however, is undergoing significant declines across the globe, and there is an urgent need to develop change detection techniques appropriate to the scale of loss and applicable to the complex coastal marine environment. Our work aimed to develop remote-sensing-based techniques for detection of changes between 1990 and 2019 in the area of seagrass meadows in Tauranga Harbour, New Zealand. Four state-of-the-art machine-learning models, Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boost (XGB), and CatBoost (CB), were evaluated for classification of seagrass cover (presence/absence) in a Landsat 8 image from 2019, using near-concurrent Ground-Truth Points (GTPs). We then used the most accurate one of these models, CB, with historic Landsat imagery supported by classified aerial photographs for an estimation of change in cover over time. The CB model produced the highest accuracies (precision, recall, F1 scores of 0.94, 0.96, and 0.95 respectively). We were able to use Landsat imagery to document the trajectory and spatial distribution of an approximately 50% reduction in seagrass area from 2237 ha to 1184 ha between the years 1990–2019. Our illustration of change detection of seagrass in Tauranga Harbour suggests that machine-learning techniques, coupled with historic satellite imagery, offers potential for evaluation of historic as well as ongoing seagrass dynamics.


2019 ◽  
Vol 11 (16) ◽  
pp. 1916 ◽  
Author(s):  
Claudia Corradino ◽  
Gaetana Ganci ◽  
Annalisa Cappello ◽  
Giuseppe Bilotta ◽  
Alexis Hérault ◽  
...  

Accurate mapping of recent lava flows can provide significant insight into the development of flow fields that may aid in predicting future flow behavior. The task is challenging, due to both intrinsic properties of the phenomenon (e.g., lava flow resurfacing processes) and technical issues (e.g., the difficulty to survey a spatially extended lava flow with either aerial or ground instruments while avoiding hazardous locations). The huge amount of moderate to high resolution multispectral satellite data currently provides new opportunities for monitoring of extreme thermal events, such as eruptive phenomena. While retrieving boundaries of an active lava flow is relatively straightforward, problems arise when discriminating a recently cooled lava flow from older lava flow fields. Here, we present a new supervised classifier based on machine learning techniques to discriminate recent lava imaged in the MultiSpectral Imager (MSI) onboard Sentinel-2 satellite. Automated classification evaluates each pixel in a scene and then groups the pixels with similar values (e.g., digital number, reflectance, radiance) into a specified number of classes. Bands at the spatial resolution of 10 m (bands 2, 3, 4, 8) are used as input to the classifier. The training phase is performed on a small number of pixels manually labeled as covered by fresh lava, while the testing characterizes the entire lava flow field. Compared with ground-based measurements and actual lava flows of Mount Etna emplaced in 2017 and 2018, our automatic procedure provides excellent results in terms of accuracy, precision, and sensitivity.


2020 ◽  
Vol 12 (9) ◽  
pp. 1375
Author(s):  
Md Mizanur Rahman ◽  
Xunhe Zhang ◽  
Imran Ahmed ◽  
Zaheer Iqbal ◽  
Mojtaba Zeraatpisheh ◽  
...  

Carbon to nitrogen ratio (C:N) of senescent leaf is a crucial functional trait and indicator of litter quality that affects belowground carbon and nitrogen cycles, especially soil decomposition. Although mapping the C:N ratio of fresh mature canopies has been attempted, few studies have attempted to map the C:N ratio of senescent leaves, particularly in mangroves. In this study, four machine learning models (Stochastic Gradient Boosting, SGB; Random Forest, RF; Support Vector Machine, SVM; and Partial Least Square Regression, PLSR) were compared for testing the predictability of using the Landsat TM 5 (LTM5) and Landsat 8 to map spatial and temporal distribution of C:N ratio of senescent leaves in Sundarbans Reserved Forest (SRF), Bangladesh. Surface reflectance of bands, texture metrics of bands and vegetation indices of LTM5 and Landsat 8 yearly composite images were extracted using Google Earth Engine for 2009–2010 and 2019. We found SGB, RF and SVM were significant different from PLSR based on MAE, RMSE, and R2 (p < 0.05). Our results indicate that remote sensing data, such as Landsat TM data, can be used to map the C:N ratio of senescent leaves in mangroves with reasonable accuracy. We also found that the mangroves had a high spatial variation of C:N ratio and the C:N ratio map developed in the current study can be used for improving the biogeochemical and ecosystem models in the mangroves.


Author(s):  
P. Singh ◽  
V. Maurya ◽  
R. Dwivedi

Abstract. Landslide is one of the most common natural disasters triggered mainly due to heavy rainfall, cloud burst, earthquake, volcanic eruptions, unorganized constructions of roads, and deforestation. In India, field surveying is the most common method used to identify potential landslide regions and update the landslide inventories maintained by the Geological Survey of India, but it is very time-consuming, costly, and inefficient. Alternatively, advanced remote sensing technologies in landslide analysis allow rapid and easy data acquisitions and help to improve the traditional method of landslide detection capabilities. Supervised Machine learning algorithms, for example, Support Vector Machine (SVM), are challenging to conventional techniques by predicting disasters with astounding accuracy. In this research work, we have utilized open-source datasets (Landsat 8 multi-band images and JAXA ALOS DSM) and Google Earth Engine (GEE) to identify landslides in Rudraprayag using machine learning techniques. Rudraprayag is a district of Uttarakhand state in India, which has always been the center of attention of geological studies due to its higher density of landslide-prone zones. For the training and validation purpose, labeled landslide locations obtained from landslide inventory (prepared by the Geological Survey of India) and layers such as NDVI, NDWI, and slope (generated from JAXA ALOS DSM and Landsat 8 satellite multi-band imagery) were used. The landslide identification has been performed using SVM, Classification and Regression Trees (CART), Minimum Distance, Random forest (RF), and Naïve Bayes techniques, in which SVM and RF outperformed all other techniques by achieving an 87.5% true positive rate (TPR).


2019 ◽  
Vol 71 (3) ◽  
pp. 702-725
Author(s):  
Nayara Vasconcelos Estrabis ◽  
José Marcato Junior ◽  
Hemerson Pistori

O Cerrado é um dos biomas existentes no Brasil e o segundo mais extenso da América do Sul. Possui grande importância devido a sua biodiversidade, ecossistema e principalmente por servir como um reservatório, ou “esponja”, que distribui água para os demais biomas, além de ser berço de nascentes de algumas das maiores bacias da América do Sul. No entanto, devido às atividades antrópicas praticadas (com destaque para a pecuária e silvicultura) e a redução da vegetação nativa, este bioma está ameaçado. Considerado como hotspot em biodiversidade, o Cerrado pode não existir em 2050. Com a necessidade de sua preservação, o objetivo desse trabalho consistiu em investigar o uso de algoritmos de aprendizado de máquina para realizar o mapeamento da vegetação nativa existente na região do município de Três Lagoas, utilizando a plataforma em nuvem Google Earth Engine. O processo foi realizado com uma imagem Landsat-8 OLI, datada de 10 de outubro de 2018, e com os algoritmos Random Forest (RF) e Support Vector Machine (SVM). Na validação da classificação, o RF e o SVM apresentaram índices kappa iguais a 0,94 e 0,97, respectivamente. O RF, quando comparado ao SVM, apresentou classificação mais ruidosa. Por fim, verificou-se a existência de vegetação nativa de aproximadamente 2556 km² ao adotar o RF e 2873 km² ao adotar SVM.


2021 ◽  
Author(s):  
Christos Kontopoulos ◽  
Nikos Grammalidis ◽  
Dimitra Kitsiou ◽  
Vasiliki Charalampopoulou ◽  
Anastasios Tzepkenlis ◽  
...  

&lt;p&gt;Nowadays, the importance of coastal areas is greater than ever, with approximately 10% of the global population living in these areas. These zones are an intermediate space between sea and land and are exposed to a variety of natural (e.g. ground deformation, coastal erosion, flooding, tornados, sea level rise, etc.) and anthropogenic (e.g. excessive urbanisation) hazards. Therefore, their conservation and proper sustainable management is deemed crucial both for economic and environmental purposes. The main goal of the Greece-China bilateral research project &amp;#8220;EPIPELAGIC: ExPert Integrated suPport systEm for coastaL mixed urbAn &amp;#8211; industrial &amp;#8211; critical infrastructure monitorinG usIng Combined technologies&amp;#8221; is the design and deployment of an integrated Decision Support System (DSS) for hazard mitigation and resilience. The system exploits near-real time data from both satellite and in-situ sources to efficiently identify and produce alerts for important risks (e.g. coastal flooding, soil erosion, degradation, subsidence), as well as to monitor other important changes (e.g. urbanization, coastline). To this end, a robust methodology has been defined by fusing satellite data (Optical/multispectral, SAR, High Resolution imagery, DEMs etc.) and in situ real-time measurements (tide gauges, GPS/GNSS etc.). For the satellite data pre-processing chain, image composite/mosaic generation techniques will be implemented via Google Earth Engine (GEE) platform in order to access Sentinel 1, Sentinel 2, Landsat 5 and Landsat 8 imagery for the studied time period (1991-2021). These optical and SAR composites will be stored into the main database of the EPIPELAGIC server, after all necessary harmonization and correction techniques, along with other products that are not yet available in GEE (e.g. ERS or Sentinel-1 SLC products) and will have to be locally processed. A Machine Learning (ML) module, using data from this main database will be trained to extract additional high-level information (e.g. coastlines, surface water, urban areas, etc.). Both conventional (e.g. Otsu thresholding, Random Forest, Simple Non-Iterative Clustering (SNIC) algorithm, etc.) and deep learning approaches (e.g. U-NET convolutional networks) will be deployed to address problems such as surface water detection and land cover/use classification. Additionally, in-situ or auxiliary/cadastral datasets will be used as ground truth data. Finally, a Decision Support System (DSS), will be developed to periodically monitor the evolution of these measurements, detect significant changes that may indicate impending risks and hazards, and issue alarms along with suggestions for appropriate actions to mitigate the detected risks. Through the project, the extensive use of Explainable Artificial Intelligence (xAI) techniques will also be investigated in order to provide &amp;#8220;explainable recommendations&amp;#8221; that will significantly facilitate the users to choose the optimal mitigation approach. The proposed integrated monitoring solutions is currently under development and will be applied in two Areas of Interest, namely Thermaic Gulf in Thessaloniki, Greece, and the Yellow River Delta in China. They are expected to provide valuable knowledge, methodologies and modern techniques for exploring the relevant physical mechanisms and offer an innovative decision support tool. Additionally, all project related research activities will provide ongoing support to the local culture, society, economy and environment in both involved countries, Greece and China.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document