scholarly journals A New Processing Chain for Real-Time Ground-Based SAR (RT-GBSAR) Deformation Monitoring

2019 ◽  
Vol 11 (20) ◽  
pp. 2437 ◽  
Author(s):  
Zheng Wang ◽  
Zhenhong Li ◽  
Yanxiong Liu ◽  
Junhuan Peng ◽  
Sichun Long ◽  
...  

Due to the high temporal resolution (e.g., 10 s) required, and large data volumes (e.g., 360 images per hour) that result, there remain significant issues in processing continuous ground-based synthetic aperture radar (GBSAR) data. This includes the delay in creating displacement maps, the cost of computational memory, and the loss of temporal evolution in the simultaneous processing of all data together. In this paper, a new processing chain for real-time GBSAR (RT-GBSAR) is proposed on the basis of the interferometric SAR small baseline subset concept, whereby GBSAR images are processed unit by unit. The outstanding issues have been resolved by the proposed RT-GBSAR chain with three notable features: (i) low requirement of computational memory; (ii) insights into the temporal evolution of surface movements through temporarily-coherent pixels; and (iii) real-time capability of processing a theoretically infinite number of images. The feasibility of the proposed RT-GBSAR chain is demonstrated through its application to both a fast-changing sand dune and a coastal cliff with submillimeter precision.

2017 ◽  
Vol 5 (2) ◽  
pp. 293-310 ◽  
Author(s):  
Ryan A. Kromer ◽  
Antonio Abellán ◽  
D. Jean Hutchinson ◽  
Matt Lato ◽  
Marie-Aurelie Chanut ◽  
...  

Abstract. We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.


Author(s):  
K. Karamvasis ◽  
V. Karathanassi

Coastal zones are vulnerable to erosion and loss by level sea rise. Subsidence caused by the reduction of fluvial sediments in coastal zones found close to dams, is another important deformation factor. Quantification of the deformation rate of coastal region is essential for natural and anthropogenic activities. The study utilizes Interferometric SAR (Synthetic Aperture Radar) techniques and exploits the archive of Sentinel-1 TOPS data for the period 2014–2016. The freely available, wide ground coverage (250 × 170 km) and small temporal resolution Sentinel-1 TOPS datasets are promising for coastal applications. Persistent Scatterer Interferometry (PSI) methodologies are considered state-of-the-art remote sensing approaches for land deformation monitoring. The selected PSI method is the Small Baseline Subset (SBAS) multitemporal InSAR technique. The study area of this study is the coastal zone of west region of Lesvos Island, Greece. The main characteristic of the area is the reduction of the fluvial sediment supply from the coastal drainage basins due to construction of dams and the abstraction of riverine sediments. The study demonstrates the potentials of the SBAS method for measuring and mapping the dynamic changes in coastal topography in terms of subsidence rates and discusses its advantages and limitations. The results show that natural and rural environments appear to have diverse ground deformation patterns.


2017 ◽  
Author(s):  
Ryan A. Kromer ◽  
Antonio Abellan ◽  
D. Jean Hutchinson ◽  
Matt Lato ◽  
Marie-Aurelie Chanut ◽  
...  

Abstract. We present an Automated Terrestrial Laser Scanning (ATLS) system with automatic near real-time change detection processing. The ATLS system was tested on the Séchilienne Landslide in France for a six-week period with data collected at 30 minute intervals. The purpose of developing the system was to fill the gap of high temporal resolution TLS monitoring studies of earth surface processes and to offer a cost effective, light, portable alternative to GB-InSAR deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. We also defined a distance spatio-temporal confidence interval and achieved measurement confidence at 95 % that varied between 2 to 10 mm at target scanner distances greater than 1000 m. Additionally, we found the ATLS system is still an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Keitaro Ohno ◽  
Yusaku Ohta ◽  
Satoshi Kawamoto ◽  
Satoshi Abe ◽  
Ryota Hino ◽  
...  

AbstractRapid estimation of the coseismic fault model for medium-to-large-sized earthquakes is key for disaster response. To estimate the coseismic fault model for large earthquakes, the Geospatial Information Authority of Japan and Tohoku University have jointly developed a real-time GEONET analysis system for rapid deformation monitoring (REGARD). REGARD can estimate the single rectangular fault model and slip distribution along the assumed plate interface. The single rectangular fault model is useful as a first-order approximation of a medium-to-large earthquake. However, in its estimation, it is difficult to obtain accurate results for model parameters due to the strong effect of initial values. To solve this problem, this study proposes a new method to estimate the coseismic fault model and model uncertainties in real time based on the Bayesian inversion approach using the Markov Chain Monte Carlo (MCMC) method. The MCMC approach is computationally expensive and hyperparameters should be defined in advance via trial and error. The sampling efficiency was improved using a parallel tempering method, and an automatic definition method for hyperparameters was developed for real-time use. The calculation time was within 30 s for 1 × 106 samples using a typical single LINUX server, which can implement real-time analysis, similar to REGARD. The reliability of the developed method was evaluated using data from recent earthquakes (2016 Kumamoto and 2019 Yamagata-Oki earthquakes). Simulations of the earthquakes in the Sea of Japan were also conducted exhaustively. The results showed an advantage over the maximum likelihood approach with a priori information, which has initial value dependence in nonlinear problems. In terms of application to data with a small signal-to-noise ratio, the results suggest the possibility of using several conjugate fault models. There is a tradeoff between the fault area and slip amount, especially for offshore earthquakes, which means that quantification of the uncertainty enables us to evaluate the reliability of the fault model estimation results in real time.


2021 ◽  
Vol 13 (12) ◽  
pp. 2259
Author(s):  
Ruicheng Zhang ◽  
Chengfa Gao ◽  
Qing Zhao ◽  
Zihan Peng ◽  
Rui Shang

A multipath is a major error source in bridge deformation monitoring and the key to achieving millimeter-level monitoring. Although the traditional MHM (multipath hemispherical map) algorithm can be applied to multipath mitigation in real-time scenarios, accuracy needs to be further improved due to the influence of observation noise and the multipath differences between different satellites. Aiming at the insufficiency of MHM in dealing with the adverse impact of observation noise, we proposed the MHM_V model, based on Variational Mode Decomposition (VMD) and the MHM algorithm. Utilizing the VMD algorithm to extract the multipath from single-difference (SD) residuals, and according to the principle of the closest elevation and azimuth, the original observation of carrier phase in the few days following the implementation are corrected to mitigate the influence of the multipath. The MHM_V model proposed in this paper is verified and compared with the traditional MHM algorithm by using the observed data of the Forth Road Bridge with a seven day and 10 s sampling rate. The results show that the correlation coefficient of the multipath on two adjacent days was increased by about 10% after residual denoising with the VMD algorithm; the standard deviations of residual error in the L1/L2 frequencies were improved by 37.8% and 40.7%, respectively, which were better than the scores of 26.1% and 31.0% for the MHM algorithm. Taking a ratio equal to three as the threshold value, the fixed success rates of ambiguity were 88.0% without multipath mitigation and 99.4% after mitigating the multipath with MHM_V. The MHM_V algorithm can effectively improve the success rate, reliability, and convergence rate of ambiguity resolution in a bridge multipath environment and perform better than the MHM algorithm.


2012 ◽  
Vol 1 (3) ◽  
pp. 49-61 ◽  
Author(s):  
Michael Auer

Parallel processing methods in Geographic Information Systems (GIS) are traditionally used to accelerate the calculation of large data volumes with sophisticated spatial algorithms. Such kinds of acceleration can also be applied to provide real-time GIS applications to improve the responsiveness of user interactions with the data. This paper presents a method to enable this approach for Web GIS applications. It uses the JavaScript 3D graphics API (WebGL) to perform client-side parallel real-time computations of 2D or 2.5D spatial raster algorithms on the graphics card. The potential of this approach is evaluated using an example implementation of a hillshade algorithm. Performance comparisons of parallel and sequential computations reveal acceleration factors between 25 and 100, mainly depending on mobile or desktop environments.


2017 ◽  
Vol 209 (3) ◽  
pp. 1408-1417 ◽  
Author(s):  
Rui Tu ◽  
Jinhai Liu ◽  
Cuixian Lu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
...  

2015 ◽  
Vol 713-715 ◽  
pp. 1448-1451
Author(s):  
Lin Lu ◽  
Yan Feng Zhang ◽  
Xiao Feng Li

The high-altitude missile and other special application occasions have requirements on image storage system, such as small size, high storage speed, low temperature resistance, etc. Commonly used image storage system in the market cannot meet such requirement. In the paper, real-time image storage system solutions on missile based on FPGA should be proposed. The system mainly consists of acquisition module and memory reading module. The whole system adopts FPGA as main control chip for mainly completing real-time decoding and acquisition on one path of PAL format video images, reading and writing of NandFlash chipset, erasure, bad block management and so on. The solution has passed various environmental tests with stable performance, large data storage capacity and easy expansion, which has been used in engineering practice.


2021 ◽  
Author(s):  
Joseph H. Kennedy ◽  
Krik Hogenson ◽  
Andrew Johnston ◽  
Heidi Kristenson ◽  
Alex Lewandowski ◽  
...  

<p>Synthetic Aperture Radar (SAR), with its capability of imaging day or night, ability to penetrate dense cloud cover, and suitability for interferometry, is a robust dataset for event/change monitoring. SAR data can be used to inform decision makers dealing with natural and anthropogenic hazards such as floods, earthquakes, deforestation and glacier movement. However, SAR data has only recently become freely available with global coverage, and requires complex processing with specialized software to generate analysis-ready datasets. Furthermore, processing SAR is often resource-intensive, in terms of computing power and memory, and the sheer volume of data available for processing can be overwhelming. For example, ESA's Sentinel-1 has produced ~10PB of data since launch in 2014. Even subsetting the data to a small scientific area of interest can result in many thousands of scenes, which must be processed into an analysis-ready format.</p><p>The Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3), which is now out of beta and available to the public, provides custom, on-demand processing of Sentinel-1 SAR data at no cost to users. HyP3 is integrated directly into Vertex, ASF's primary data discovery tool, so users can easily select an area of interest on the Earth, find available SAR products, and click a button to send them (individually, or as a batch) to HyP3 for Radiometric Terrain Correction (RTC), Interferometric SAR (InSAR), or Change Detection processing. Processing leverages AWS cloud computing and is done in parallel for rapid product generation. Each process provides options to customize the processing and final output products, and provides metadata-rich, analysis-ready final products to users.</p><p>In addition to the Vertex user interface, HyP3 provides a RESTful API and a python software developers kit (SDK) to allow programmatic access and the ability to build HyP3 into user workflows. HyP3 is open source and designed to allow users to develop new processing plugins or stand up their own custom processing pipeline.</p><p>We will present an overview of using HyP3, both inside Vertex and programmatically, and the available output products. We will demonstrate using HyP3 to investigate the consequences of natural hazards and very briefly discuss the technologies and software design principles used in the development of HyP3 and how users could contribute new plugins, or stand up their own custom processing pipeline.</p>


Sensor Review ◽  
2015 ◽  
Vol 35 (4) ◽  
pp. 348-356 ◽  
Author(s):  
Yongxing Guo ◽  
Dongsheng Zhang ◽  
Jianjun Fu ◽  
Shaobo Liu ◽  
Shengzhuo Zhang ◽  
...  

Purpose – The purpose of this paper is to investigate an online monitoring strategy that incorporates fiber Bragg gratings (FBGs) for deformation displacement detection, with the background that slope deformation monitoring is crucial to engineering safety supervision and disaster prevention. Design/methodology/approach – A “beam element” method has been proposed, introduced and experimentally verified in detail. The deformation displacement along a flexible bar can be obtained based on this method, using the distributed strain detected by the FBGs embedded in the bar. A novel sensor structure containing inclinometer casings and a series of connected flexible pipes with FBGs embedded has been proposed. Based on the features of this structure, two FBG deformation sensors have been manufactured and installed into a slope. A matched monitoring station which permits real-time supervision, warning and remote access across the Internet was established and operated. Findings – Displacement data from September 2013 to August 2014 are obtained, which is basically consistent with the practical situation. Originality/value – The FBG deformation sensors demonstrated a robust and reliable measurement performance, which is promising for real-time disaster warning in slope engineering.


Sign in / Sign up

Export Citation Format

Share Document