scholarly journals A Comprehensive Evaluation of 4-Parameter Diurnal Temperature Cycle Models with In Situ and MODIS LST over Alpine Meadows in the Tibetan Plateau

2019 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Yaping Chang ◽  
Yongjian Ding ◽  
Qiudong Zhao ◽  
Shiqiang Zhang

Diurnal variation of land surface temperature (LST) is essential for land surface energy and water balance at regional or global scale. Diurnal temperature cycle (DTC) model with least parameters and high accuracy is the key issue in estimating the spatial–temporal variation of DTC. The alpine meadow is the main land cover in the Tibetan Plateau (TP). However, few studies have been reported on the performance of different DTC models over alpine meadows in the TP. Four semi-empirical types of DTC models were used to generate nine 4-parameter (4-para) models by fixing some of free parameters. The performance of the nine 4-para DTC models were evaluated with four in situ and MODIS observations. All models except GOT09-dT-ts (dT means the temperature residual between T0 and T (t→∞); ts means the time when free attenuation begins) had higher correlation with in situ data (R2 > 0.9), while the INA08-ts model performed best with NSE of 0.99 and RMSE of 2.04 K at all sites. The GOT09-ts-τ (τ is the total optical thickness), VAN06-ts-ω1 (ω1 means the half-width of the cosine term in the morning), and GOT01-ts models had better performance, followed by GOT09-dT-τ, GOT01-dT, and VAN06-ts-ω2 (ω2 means the half-width of the cosine term in the afternoon) models. All models had higher accuracy in summer than in other seasons, while poorer performance was produced in winter. The INA08-ts model showed best performance among all seasons. Models with fixing ts could produce higher accuracy results than that with fixing dT. The comparison of INA08-ts model driven by in situ and Moderate Resolution Imaging Spectroradiometer (MODIS) data indicated that the simulation accuracy mainly depended on the accuracy of MODIS LST. The daily maximum temperature generated by the nine models had high accuracy when compared with in situ data. The sensitivity analysis indicated that the INA08-dT and GOT09-dT-ts models were more sensitive to parameter dT, while all models were insensitive to parameter ts, and all models had weak relationship with parameters ω and τ. This study provides a reference for exploring suitable DTC model in the TP.

2011 ◽  
Vol 11 (7) ◽  
pp. 19617-19638 ◽  
Author(s):  
Y. Ma ◽  
L. Zhong ◽  
B. Wang ◽  
W. Ma ◽  
X. Chen ◽  
...  

Abstract. In this study, a parameterization methodology based on MODIS (Moderate Resolution Imaging Spectroradiometer) and in-situ data is proposed and tested for deriving the regional surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous landscape. As a case study, the methodology was applied to the Tibetan Plateau area. Four images of MODIS data (30 January 2007, 15 April 2007, 1 August 2007 and 25 October 2007) were used in this study for the comparison among winter, spring, summer and autumn. The derived results were also validated by using the "ground truth" measured in the stations of the Tibetan Observation and Research Platform (TORP). The results show that the derived surface variables (surface reflectance and surface temperature) and surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) in four different seasons over the Tibetan Plateau area are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface features over the Tibetan Plateau. Also, the estimated land surface variables and surface heat fluxes are in good agreement with the ground measurements, and all their absolute percent difference (APD) is less than 10 % in the validation sites. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface variables and surface heat fluxes using the MODIS and in-situ data over the Tibetan Plateau area. The shortage and further improvement of the methodology were also discussed.


2013 ◽  
Vol 13 (3) ◽  
pp. 8435-8453
Author(s):  
Y. Ma ◽  
Z. Zhu ◽  
L. Zhong ◽  
B. Wang ◽  
C. Han ◽  
...  

Abstract. In this study, a new parameterization method based on MODIS (Moderate Resolution Imaging Spectroradiometer) data, AVHRR (Advanced Very High-Resolution Radiometer) data and in-situ data is constructed and tested for deriving the regional evaporative fraction (EF) over heterogeneous landscape. As a case study, the methodology was applied to the Tibetan Plateau area. Eight images of MODIS data (17 January 2003, 14 April 2003, 23 July 2003 and 16 October 2003; 30 January 2007, 15 April 2007, 1 August 2007 and 25 October 2007) and four images of AVHRR data (17 January 2003, 14 April 2003, 23 July 2003 and 16 October 2003) were used in this study for the comparison among winter, spring, summer and autumn and the annual variation analysis. The derived results were also validated by using the "ground truth" measured in the stations of the Tibetan Observation and Research Platform (TORP) and the CAMP/Tibet (CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau). The results show that the derived EF in four different seasons over the Tibetan Plateau area is in good accordance with the land surface status. The EF show a wide range due to the strong contrast of surface features over the Tibetan Plateau. Also, the estimated EF is in good agreement with the ground measurements, and their absolute percent difference (APD) is less than 10% in the validation sites. The results from AVHRR were also in agreement with MODIS, with the latter usually displaying a higher level of accuracy. It is therefore concluded that the proposed methodology is successful for the retrieval of EF using the MODIS data, AVHRR data and in-situ data over the Tibetan Plateau area, and the MODIS data is the better one and it should be used widely for the evapotranspiration (ET) research over this region.


2011 ◽  
Vol 11 (20) ◽  
pp. 10461-10469 ◽  
Author(s):  
Y. Ma ◽  
L. Zhong ◽  
B. Wang ◽  
W. Ma ◽  
X. Chen ◽  
...  

Abstract. In this study, a parameterization methodology based on MODIS (Moderate Resolution Imaging Spectroradiometer) and in situ data is proposed and tested for deriving the regional surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous landscape. As a case study, the methodology was applied to the Tibetan Plateau area. Four images of MODIS data (30 January 2007, 15 April 2007, 1 August 2007 and 25 October 2007) were used in this study for the comparison among winter, spring, summer and autumn. The derived results were also validated by using the "ground truth" measured in the stations of the Tibetan Observation and Research Platform (TORP). The results show that the derived surface variables (surface reflectance and surface temperature) and surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) in four different seasons over the Tibetan Plateau area are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface features over the Tibetan Plateau. Also, the estimated land surface variables and surface heat fluxes are in good agreement with the ground measurements, and all their absolute percent difference (APD) is less than 10% in the validation sites. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface variables and surface heat fluxes using the MODIS and in situ data over the Tibetan Plateau area. The shortage and further improvement of the methodology were also discussed.


2020 ◽  
Vol 12 (3) ◽  
pp. 509 ◽  
Author(s):  
Ruodan Zhuang ◽  
Yijian Zeng ◽  
Salvatore Manfreda ◽  
Zhongbo Su

It is crucial to monitor the dynamics of soil moisture over the Tibetan Plateau, while considering its important role in understanding the land-atmosphere interactions and their influences on climate systems (e.g., Eastern Asian Summer Monsoon). However, it is very challenging to have both the surface and root zone soil moisture (SSM and RZSM) over this area, especially the study of feedbacks between soil moisture and climate systems requires long-term (e.g., decadal) datasets. In this study, the SSM data from different sources (satellites, land data assimilation, and in-situ measurements) were blended while using triple collocation and least squares method with the constraint of in-situ data climatology. A depth scaling was performed based on the blended SSM product, using Cumulative Distribution Function (CDF) matching approach and simulation with Soil Moisture Analytical Relationship (SMAR) model, to estimate the RZSM. The final product is a set of long-term (~10 yr) consistent SSM and RZSM product. The inter-comparison with other existing SSM and RZSM products demonstrates the credibility of the data blending procedure used in this study and the reliability of the CDF matching method and SMAR model in deriving the RZSM.


2021 ◽  
Author(s):  
Weiqiang Ma ◽  
Yaoming Ma ◽  
Yizhe Han ◽  
Wei Hu ◽  
Lei Zhong ◽  
...  

<p>Firstly, based on the difference of model and in-situ observations, a serious of sensitive experiments were done by using WRF. In order to use remote sensing products, a land-atmosphere model was initialized by ingesting land surface parameters, such as AMSR-E RS products, and the results were compared with the default model configuration and with in-situ long-term CAMP/Tibet observations.</p><p>Secondly, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in-situ long-term CAMP/Tibet observations. The differences between the AMSR-E initialized model runs with the default model configuration and in situ data showed an apparent inconsistency in the model-simulated land surface heat fluxes. The results showed that the soil moisture was sensitive to the specific model configuration. To evaluate and verify the model stability, a long-term modeling study with AMSR-E soil moisture data ingestion was performed. Based on test simulations, AMSR-E data were assimilated into an atmospheric model for July and August 2007. The results showed that the land surface fluxes agreed well with both the in-situ data and the results of the default model configuration. Therefore, the simulation can be used to retrieve land surface heat fluxes from an atmospheric model over the Tibetan Plateau.</p><p>All of the different methods will clarify the land surface heating field in complex plateau, it also can affect atmospheric cycle over the Tibetan Plateau even all of the global atmospheric cycle pattern.</p>


2014 ◽  
Vol 14 (3) ◽  
pp. 1507-1515 ◽  
Author(s):  
Y. Ma ◽  
Z. Zhu ◽  
L. Zhong ◽  
B. Wang ◽  
C. Han ◽  
...  

Abstract. In this study, a parameterization method based on MODIS (Moderate Resolution Imaging Spectroradiometer) data, AVHRR (Advanced Very High-Resolution Radiometer) data and in situ data is introduced and tested for estimating the regional evaporative fraction Λ over a heterogeneous landscape. As a case study, the algorithm was applied to the Tibetan Plateau (TP) area. Eight MODIS data images (17 January, 14 April, 23 July and 16 October in 2003; 30 January, 15 April, 1 August and 25 October in 2007) and four AVHRR data images (17 January, 14 April, 23 July and 16 October in 2003) were used in this study to compare winter, spring, summer and autumn values and for annual variation analysis. The results were validated using the "ground truth" measured at Tibetan Observation and Research Platform (TORP) and the CAMP/Tibet (CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau) meteorological stations. The results show that the estimated evaporative fraction Λ in the four different seasons over the TP is in clear accordance with the land surface status. The Λ fractions show a wide range due to the strongly contrasting surface features found on the TP. Also, the estimated Λ values are in good agreement with "ground truth" measurements, and their absolute percentage difference (APD) is less than 10.0% at the validation sites. The AVHRR data were also in agreement with the MODIS data, with the latter usually displaying a higher level of accuracy. It was therefore concluded that the proposed algorithm was successful in retrieving the evaporative fraction Λ using MODIS, AVHRR and in situ data over the TP. MODIS data are the most accurate and should be used widely in evapotranspiration (ET) research in this region.


2021 ◽  
Vol 13 (18) ◽  
pp. 3661
Author(s):  
Zhongbo Su ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Xiaohua Dong ◽  
Junping Du ◽  
...  

A better understanding of the water and energy cycles at climate scale in the Third Pole Environment is essential for assessing and understanding the causes of changes in the cryosphere and hydrosphere in relation to changes of plateau atmosphere in the Asian monsoon system and for predicting the possible changes in water resources in South and East Asia. This paper reports the following results: (1) A platform of in situ observation stations is briefly described for quantifying the interactions in hydrosphere-pedosphere-atmosphere-cryosphere-biosphere over the Tibetan Plateau. (2) A multiyear in situ L-Band microwave radiometry of land surface processes is used to develop a new microwave radiative transfer modeling system. This new system improves the modeling of brightness temperature in both horizontal and vertical polarization. (3) A multiyear (2001–2018) monthly terrestrial actual evapotranspiration and its spatial distribution on the Tibetan Plateau is generated using the surface energy balance system (SEBS) forced by a combination of meteorological and satellite data. (4) A comparison of four large scale soil moisture products to in situ measurements is presented. (5) The trajectory of water vapor transport in the canyon area of Southeast Tibet in different seasons is analyzed, and (6) the vertical water vapor exchange between the upper troposphere and the lower stratosphere in different seasons is presented.


2009 ◽  
Vol 13 (5) ◽  
pp. 687-701 ◽  
Author(s):  
K. Yang ◽  
Y.-Y. Chen ◽  
J. Qin

Abstract. The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs) for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere), CoLM (Common Land Model), and Noah. They are run at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau. The identified key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models, when using default parameters, significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; an advanced scheme for soil water flow is implemented in a LSM, based on which the soil resistance is determined from soil water content and meteorological conditions. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature gradient, which would result in higher net radiation, lower soil heat fluxes and thus higher sensible heat fluxes in the models. A parameterization scheme for this resistance has been shown to be effective to remove these biases.


2020 ◽  
Author(s):  
Zhu La ◽  
Kun Yang ◽  
Jun Qin ◽  
Juzhi Hou ◽  
Yanbin Lei ◽  
...  

<p>Lake surface temperature is a key parameter in understanding the variability of lake thermal condition and evaporation. MODIS-derived LST is widely used as a reference for lake-model validations and process studies in data-scarce regions. In this study, the accuracy and limitation of MODIS LST were examined on the Tibetan Plateau, where there are thousands of lakes. It is found that agreement between MODIS LST and in-situ subsurface (~1 m depth) temperature collected at six large lakes depends on the thermal phases. During lake turnover period (nighttime or from October to freeze-up date), the sink of surface water causes mixed with subsurface water. The MODIS LST was consistent with the in-situ data, indicating its high accuracy. During stratification period (from May to September), the lakes were thermally stratified due to intense solar heating and high salinity in some lakes; the daytime MODIS LST is systematically higher than the in-situ subsurface temperature, indicating it is credible. However, the MODIS LST has two limitations in this region. First, nighttime retrievals during monsoon season have considerable cold biases in monsoon-controlled region. This can be associated with shallow clouds or fog near the lake surface that occur frequently at night but are not well detected by MODIS. Second, the retrievals for narrow and small lakes have warm (cold) biases in the daytime (at night), perhaps due to proximity effect of mountains and land. The two situations are common across the Tibetan Plateau and thus severely restrict the applications of MODIS LST in lake studies.</p>


Sign in / Sign up

Export Citation Format

Share Document